

<i>IMPORTANT</i> <i>DEFINITIONS</i>	 This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death. DANGER—Indicates a hazardous situation which, if not avoided, will result in death or serious injury. WARNING—Indicates a hazardous situation which, if not avoided, could result in death or serious injury. CAUTION—Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury. NOTICE—Indicates a hazard that could result in property damage only (including damage to the control). IMPORTANT—Designates an operating tip or maintenance suggestion.
	The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage. The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.
installing, oper	e manual and all other publications pertaining to the work to be performed before rating, or servicing this equipment. Practice all plant and safety instructions and ailure to follow instructions can cause personal injury and/or property damage.
you have the la The revision le version of mos	n may have been revised or updated since this copy was produced. To verify that atest revision, be sure to check the Woodward website: <u>www.woodward.com/pubs/current.pdf</u> vel is shown at the bottom of the front cover after the publication number. The latest at publications is available at: <u>www.woodward.com/publications</u> tion is not there, please contact your customer service representative to get the
electrical, or o damage to the "negligence" v	zed modifications to or use of this equipment outside its specified mechanical, ther operating limits may cause personal injury and/or property damage, including equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or vithin the meaning of the product warranty thereby excluding warranty coverage ng damage, and (ii) invalidate product certifications or listings.
NOTICE	To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.
NOTICE	To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, <i>Guide for Handling and</i> <i>Protection of Electronic Controls, Printed Circuit Boards, and Modules</i> .

Woodward Governor Company reserves the right to update any portion of this publication at any time. Information provided by Woodward Governor Company is believed to be correct and reliable. However, no responsibility is assumed by Woodward Governor Company unless otherwise expressly undertaken. © Woodward 2007

Contents

ELECTROSTATIC DISCHARGE AWARENESS	. IV
CHAPTER 1. GENERAL INFORMATION Introduction General Description Hardware Software Application Program	1 2 2
CHAPTER 2. DESCRIPTION OF OPERATION	5 5 7 .11 .12 .14 .15 .15
CHAPTER 3. INSTALLATION AND WIRING GUIDELINES Introduction Electrical Connections Grounding for Protection Against Electrical Shock Input Power	.17 .17 .18 .21
CHAPTER 4. POWERSENSE SIGNAL WIRING PowerSense Board Wiring Pinout Potential Transformer (PT) Inputs Current Transformer (CT) Inputs Single Phase Monitoring Speed Bias Output Voltage Bias Output LON Communication Port	.24 .24 .32 .35 .35 .35
CHAPTER 5. CONTROL SIGNAL WIRING Introduction Fuel Control Input/Output Signals MPU (Speed) Inputs Analog Inputs Discrete Inputs Discrete Outputs Analog Outputs Communication Ports Software Interface Tools Setup Configure Menu Descriptions	.39 .39 .41 .45 .46 .49 .50 .52
CHAPTER 6. CONTROL FUNCTIONALITY SETUP PROCEDURES Introduction Start Modes Auto Start/Stop Sequence Event Annunciation (Alarms/Shutdowns) Alarm Sequence Soft Shutdown Sequence Hard Shutdown Sequence Setup of PT Speed Control Setup of the Accel ControlPID or Limiter Curve	.60 .61 .65 .65 .66 .66

Contents

Setup of the Decel Curve Setup Setup of EGT Temperature Control Setup of EGT Temp Derivative Control Setup of Generator Settings Setup of Load Sharing Synchronizer. Load Control Process Control VAR/PF Control Power and Energy Metering Protective Relaying Tunable Upload/Download Function	.68 .69 .69 .69 .70 .71 .72 .72 .72
CHAPTER 7. GENERATOR PROTECTION FUNCTIONS Protective Relay Descriptions. Over and Under Voltage Over and Under Frequency Directional Power Negative Phase Sequence Over Voltage Negative Phase Sequence Over Current. Phase Over Current. Directional VAR Phase Current Imbalance. Sync Check. Voltage (VAR/PF) Bias Limit Reached. Speed / Frequency Mismatch. Inverse Time Curve	.74 .75 .76 .77 .78 .79 .79 .81 .81 .81
CHAPTER 8. TROUBLESHOOTING Dynamic Response Problems Accel/Decel Curves Setup	.84 .86
Poor Valve Response Common SIO Port Configurations Serial Null Modem Cable Reference	.89
Common SIO Port Configurations	.89 .89 .91 .91 .92 .93 .93 .94 .94
Common SIO Port Configurations Serial Null Modem Cable Reference CHAPTER 9. SERVICE OPTIONS Product Service Options Woodward Factory Servicing Options Returning Equipment for Repair Replacement Parts Engineering Services How to Contact Woodward	.89 .89 .91 .92 .93 .93 .93 .94 .94
Common SIO Port Configurations	.89 .89 .91 .92 .93 .93 .94 .94 .95 96 12
Common SIO Port Configurations Serial Null Modem Cable Reference CHAPTER 9. SERVICE OPTIONS Product Service Options Woodward Factory Servicing Options Returning Equipment for Repair Replacement Parts Engineering Services How to Contact Woodward Technical Assistance	.89 .89 .91 .92 .93 .93 .94 .94 .95 96 12
Common SIO Port Configurations	.89 .89 .91 .92 .93 .93 .94 .94 .95 96 12 26 32
Common SIO Port Configurations	.89 .89 .91 .91 .92 .93 .93 .93 .94 .94 .95 96 12 26 32 .35

Illustrations and Tables

Figure 2-1. GTC190A Start Sequence Logic Flow Diagram	
Figure 2-2. GTC190A Functional Block Diagram	7
Figure 3-1. Fixed Ring Terminals	
Figure 3-2. Recommended Single Point Grounding Scheme	
Figure 3-3. I/O Isolation	20
Figure 3-4. Atlas Terminal Strip Location View	
Figure 3-5. Input Power Wiring Diagram	
Figure 4-1. PT Wiring—3Ø Wye, L-N, without Transformer	
Figure 4-2. PT Wiring—3Ø, Wye, L-N, with Transformer	
Figure 4-3. PT Wiring—3Ø Wye, L-L, with Transformers	
Figure 4-4. PT Wiring—3Ø Wye, & 1Ø Wye, L-L, with Transformers	29
Figure 4-5. PT Wiring—3Ø Delta, L-L, with Transformers	30
Figure 4-6. PT Wiring—3Ø Delta, L-L, without Transformers	31
Figure 4-7. CT Wiring—3Ø Wye	33
Figure 4-8. CT Wiring—3Ø Delta	34
Figure 4-9. Voltage Bias Wiring Diagram, 4–20 mA Output	
Figure 4-10. Voltage Bias Wiring Diagram, Bi-polar Voltage Output	
Figure 4-11. LON Connections	37
Figure 4-12. Direct Wired LON Network	
Figure 4-13. Stub Wired LON Network	
Figure 5-1. MPU Wiring Diagram	
Figure 5-2. Analog Input Wiring Diagram; 4–20 mA	
Figure 5-3. Discrete Output Wiring Diagram	
Figure 5-4. Actuator Output Wiring Diagram	
Figure 5-5. Analog Output Wiring Diagram	
Figure 5-6. Serial 1 Wiring Diagrams, RS-422	
Figure 5-7. Serial 1 Wiring Diagrams, RS-485	
Figure 5-8. Serial 1 Wiring Diagrams, RS-232	
Figure 5-9. AppManager Tool.	
Figure 5-10. Initial WinPanel screen	
Figure 5-11. OPC Connection screen	
Figure 5-12. Initial SOS screen Figure 5-13. Ethernet Link IP address	
Figure 5-14. Reading Control Information	
Figure 5-15. Building Control Information	
Figure 5-16. Connection to Control Established	
Figure 5-17. WinPanel Menu and Explorer	
Figure 6-1. Auto Start/Stop Sequence	
Figure 7-1. Over Voltage/Under Voltage Alarm	
Figure 7-2. Over Power/Reverse Power	
Figure 7-3. Over Power/Reverse Power Time Delay	
Figure 7-4. Phase Current Imbalance	
Figure 7-5. Phase-Balance Current, Inverse Time Delay	
Figure 7-6. Inverse Curve Time Delay, Level Shift	
Figure 7-7. Inverse Curve Time Delay, Linear Graph	
Figure 8-1. Ratio Decay Cycle	
Figure 8-2. Proportional Gain Settings	
Figure 8-3. Linearized Flow Schedule	88
Table 1-1. Atlas-II Input/Output List	3
Table 1-2. Distributed Input/Output List	
Table 8-1. Valve Test Data	
Table 8-2. Valve Test Data	

Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, and plastic ash trays) away from the control, the modules, and the work area as much as possible.
- 4. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

NOTICE

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

Chapter 1. General Information

Introduction

This manual describes the GTC190A Digital Control System designed to control single-shaft gas turbines for generator applications. It is pre-programmed to perform fuel metering control, a minimal start/stop sequencing routine and communications to a package OI (Operator Interface) or plant DCS (Distributed Control System). The control has been designed to integrate with a user created Ladder Logic (LL) program. The application also has been pre-programmed to access a large amount of Distributed I/O that can be used to handle all of the ancillary equipment and plant signals that are needed to control the entire turbine/generator package. This manual should be used along with the standard Atlas-II[™] hardware manual (26415), and therefore the scope of this document is only to describe details of the GTC190A application software functionality and assist the customer in configuration and start-up of the control. Refer to manuals 26415 for information on hardware specifications, mounting information, and wiring details.

• The **GTC190A** performs the functions described above. It is intended for applications on single-shaft turbines applied on power generation packages.

Scope of Supply

Item # 8262-1032	Description GTC190A Atlas-II w/ PSENS, Profibus (Single Shaft Gas Turbine Fuel Control)
BCD85236	CD—GTC190A System Documentation & Software Tools

Optional Add-ons

ltem #	Description
1784-505	Moore Industries AD590 Ambient Temperature Signal Converter
8900-067	Ambient Air Temperature Sensor (AD590)
5441-699	Relay Interface (12) FTM
5417-747	Relay FTM Interface Cable
8200-224	Servo Position Controller (SPC) – up to quantity of 4
Inquire	GS Valves
Inquire	Distributed I/O Kit

General Description

The Woodward GTC190A Atlas-II Digital Control System is a configurable control system for industrial gas turbines that produces a fuel demand output to control speed, load, pressure, and temperature. It contains optional start/stop sequence control and Modbus[®] * communication links (Local & Remote) to an optional HMI or a user defined operator interface. The GTC190A also includes an I/O module that interfaces to Generator and Utility bus PT's and CT's performing functions such as synchronization, power metering, breaker commands and load sharing. In addition to this, the control has a runtime license to allow the customer to create their own program using Ladder Logic. With this tool they can customize the use of this control for a specific site. For a given GTC model, the maximum I/O available is fixed (both Atlas-II direct and distributed I/O) and has been preprogrammed into the unit. If additional I/O is required, the customer should inquire about other models of the GTC family.

*-Modbus is a trademark of Schneider Automation Inc.

Hardware

The GTC190A Atlas-II Digital Control is designed to be bulkhead mounted in a control panel. The complete unit contains a 'SmartCore CPU A5200' module, a Power Supply board, a PowerSense module, 2 Analog Combo modules and a Profibus interface port for distributed I/O. In addition, the system can also include an optional relay Field Termination Module (FTM). These components are designed for DIN rail mounting in the control cabinet.

The CPU module controls the system. The I/O modules interface the CPU module to the outside world, permitting it to sense digital and analog inputs and to issue analog and discrete outputs.

Power Requirements

The Atlas-II Digital Control System requires an 18-32 Vdc input supply voltage.

Physical Description

For further details on the physical hardware, signal accuracy or environmental specifications, refer to the Atlas-II product manual 26415 (Vol 1 & 2).

Central Processor Unit (CPU) Module

The A5200 CPU runs under a VxWorks[®] * real time operating system and follows the instructions of the application program, which controls all of the Input and Output circuits of the GTC190A Atlas-II Control.

*—VxWorks is a trademark of Wind River Systems, Inc.

The CPU module has the following Communications Ports:

Ethernet 100BT-

4-10/100 Base-TX Ethernet port used for Modbus communication and service tools. (Port #1 must be used for interfacing to Woodward Service tools)

OS Service Port-

This port is a dedicated operating system debug port and should not be used.

Profibus-

This is the port connection that links to the Distributed I/O.

Serial COM 1

The COM 1 Serial Port is configured for use as a Modbus interface on this control.

Serial COM 2

The COM 2 Serial Port is configured for use as a Modbus interface on this control.

I/O Modules

Each module has a FAULT LED that is controlled by the CPU. During every initialization of the system, the CPU turns these LEDs on. The CPU then individually tests each I/O module. If an I/O module fails any test, the FAULT LED remains on. The FAULT LED remaining on after the diagnostics have run may mean that the module has failed a test.

If the FAULT LED's come on at any other time one of 3 things has occurred:

- 1. The module has faulted
- 2. The CPU / Operating System has detected a fault and shutdown the module
- 3. The unit has been placed in IO Lock by the Watch Window service tool (which happens when the unit is placed in Configure mode).

For further details on the specific hardware modules installed in this system refer to the Atlas-II product manual 26415.

Type of Input	# of Inputs	Options/Details
DC Power Input	•	
Low Voltage dc input	1	18–32 Vdc, protected from reverse polarity
Analog Inputs		
Function Configurable Inputs	16	Current 4-20 mA dc or Voltage 0-5 Vdc
Thermocouple Inputs	20	T/C type configurable
MPU Speed Sensor	6	100–20 000 Hz
Bus PT Input	1	3-phase ac input
Generator PT Input	1	3-phase ac input
Bus CT Input	1	3-phase ac input
Generator CT Input	1	3-phase ac input
Analog Outputs		
Configurable Analog (Speed Bias)	1	±3 Vdc, 1–5 Vdc, 500 Hz, PWM, 4–20 mA
Voltage Bias	1	±1 Vdc, ±3 Vdc, ±9 Vdc, 4–20 mA
Function Configurable outputs	8	Current (4-20 mA)
Proportional Actuator outputs	2	Current 0-20 mA or 0-200mA range
Discrete Inputs		
Configurable Switch or Contact inputs	24	Switch to + to activate, Isolated from input power
Discrete Outputs		
Relay Driver Outputs	12	Low side drivers
Communication Ports		
Serial Ports	2	(1)—RS-232, (2)—RS-232/422/485

GTC190A CORE Atlas-II I/O - The direct local I/O (input/output) is:

Table 1-1. Atlas-II Input/Output List

Type of Input	# of Inputs	Options/Details
Profibus Communication Head	4	DISTRIBUTED I/O -PROFIBUS ADAPTER – Either 1794-PDP OR ProSoft 3170-PDP (NOTE: These require different Applicom configuration files to the I/O modules) - Equip Head #1 = 5 DI - Equip Head #2 = 6 T/C, 2 RTD - Equip Head #3 = 5 AI, 2 AO - Equip Head #4 = 4 DO
Analog Inputs		
Analog Current Inputs	40	MODULE-ANALOG INPUT, ALLEN-BRADLEY (1794-IE8/B)
Thermocouple Inputs	48	MODULE -TC INPUT, ALLEN-BRADLEY (1794-IT8)
RTD Inputs	16	RTD INPUT, ALLEN-BRADLEY (1794-IR8)
Analog Outputs		
Analog Current Outputs	8	MODULE-ANALOG OUTPUT, ALLEN-BRADLEY (1794-OE4/B)
Discrete Inputs		
Contact inputs	160	MODULE-DISCRETE INPUT, ALLEN-BRADLEY (1794-IB32)
Discrete Outputs Relay Driver Outputs	128	DISCRETE OUTPUT, ALLEN-BRADLEY (1794-OB32P)

GTC190A Distributed I/O - The pre-programmed AB Flex (1794- series) I/O is:

Table 1-2. Distributed Input/Output List

Software Application Program

The application program is designed by using the Woodward GAP[™] Graphical Application Program. The GAP program, which runs on a standard PC (personal computer), builds and compiles the application program file. This application code is then processed through a coder/compiler, which generates the application program code. This executable code is then loaded into memory on the CPU module circuit board. The GTC190A application is designed as a fuel control for a single-shaft gas turbine and is intended to provide proper fuel demand control from the initial 'Fuel On' signal to 'Fuel Off'. The GTC190A control, as delivered from Woodward, also contains software options to provide turbine start/stop sequencing logic. It contains configurable start permissives and can control the turbine motor starter, ignitors, and positive fuel shutoff valves (block valves) in addition to the fuel-metering valve for both Gas and Liguid fuels. The GTC190A takes PT and CT inputs directly into the PowerSense module, which allows the application to include functionality of monitoring of the generator and Bus power, synchronization, breaker closure, reactive load control and load sharing. The application also allows the user to take some of the GTC programmed I/O signals and reallocate them for a site specific use for some off-turbine package sub-system indication, or plant process requirements. Specifics on the options available for customer signals are in the fuel control Input / Output signal section. All of the pre-programmed distributed I/O is intended to be available for customer programming via the Ladder Logic software programming tool.

In summary the GTC190A can be configured to provide complete automated control of a gas turbine from start to light off, to rated speed, synchronization, breaker closure and ramp up to full load setpoint. The user also has the capability to add any specific programming by use of the Ladder Logic tool.

A separate and independent overspeed trip device is always required to be installed to prevent possible serious injury from an overspeeding prime mover.

Chapter 2. Description of Operation

Introduction

This chapter describes the operation and features included in the GTC190A system for control of a gas turbine driving a generator. The purpose of the chapter is to provide a clear understanding of the functions and features that are available in this Woodward GTC product.

Scope

The control has been divided into major functions for this description. Many of these functions have sub-functions, and all of these may not be utilized in your specific unit. The major functions of this Atlas-II™ Digital Control System include:

- Start Sequence Options
- Control Loop Functions
- Synchronization Logic
- Load Control Options
- Generator Protection
- Distributed I/O Programming
- Interfacing to Ladder Logic

Start Sequence Options

The sections below will provide insight as to the options programmed into the GTC for starting the gas turbine. The functional block diagram Figure 2.1 will provide an overview of the startup sequence, the specific details of setting up the start options for each sequence step is found in Chapter 6.

- Configurable Start/Stop Sequencing Logic
- Turbine Lite-Off and Flameout Detection
- Start Ramp and Start Control Logic
- Optional EGT start temp limiter

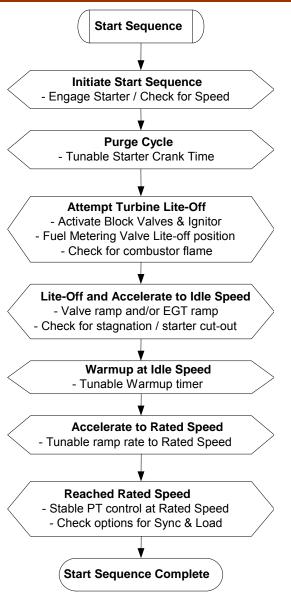


Figure 2-1. GTC190A Start Sequence Logic Flow Diagram

Start Sequence Logic

The control contains options for Starting the unit up to rated speed, closing the breaker and auto-loading the unit. Details of this logic can be found in Chapter 6.

Control Loop Functions

The sections below will provide insight as to how the control application software implements the functions shown in the functional block diagram of Figure 2.2.

- Ambient Temperature Sensing
- Single Shaft Speed Sensing (w/ Redundant probes, up to 4)
- Turbine Inlet Temperature Sensing
- Compressor Discharge Pressure (CDP or PCD) Sensing
- Exhaust Gas Temperature (EGT) Sensing (1-18 T/C inputs)
- Shaft Speed Reference Logic
- Remote Speed Reference Logic
- Speed Control of Power Turbine Shaft (PT)
- Speed Derivative (Acceleration) Control
- Load Control of Power Turbine
- EGT Limiting Control
- EGT Derivative Control
- Megawatt Limiting Control
- Process Control
- Fuel Actuator Demand and Fuel Transfer Logic

Functional Block Diagram

The following diagram shows a general outline of the functionality of the GTC190A control.

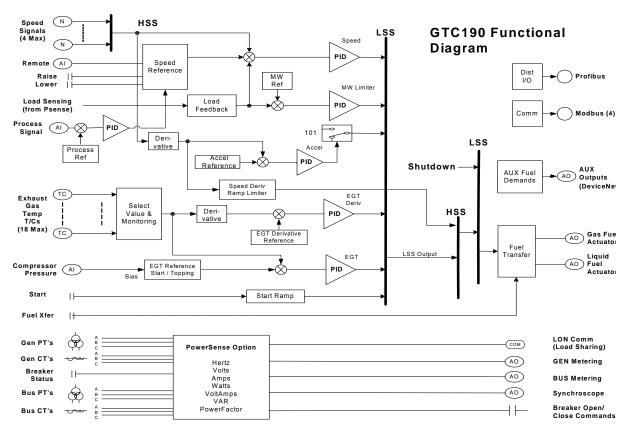


Figure 2-2. GTC190A Functional Block Diagram

Speed Control of the Turbine Shaft (SPD) PID

The intent of this controller is to maintain desired speed and load of the turbine shaft. Under normal operating conditions, the unit will be loaded while in this mode and maintain speed control from zero load to maximum load. The Speed control PID compares the actual speed signal with the speed reference and calculates an appropriate output response. The Speed control PID has three inputs:

- Actual speed input from the speed probes
- Speed reference input
- Feedback input from the LSS

The speed reference setpoint can also be driven by a generic Process Control PID that is cascaded into the speed reference logic. A user can utilize this feature to have the speed reference (turbine load) determined by the closed loop control of some plant specific process input.

The GTC190A CORE application also contains some handles to allow the user to perform overspeed tests (if that is a requirement). It will allow the user to temporarily bias the overspeed trip level that is programmed in Configure mode and permit the speed reference to be raised above its normal maximum value. The intent is to allow the testing of any external trip device that is set outside of the GTC190A trip level.

Speed Derivative / ACCEL Control (SPD_DERIV) PID or Curve

The speed derivative PID controls the maximum amount of fuel delivered based on the shaft acceleration speed. The setpoint is a limiting speed rate of change (rpm/sec) and the process variable monitored is the derivative of the speed shaft.

The acceleration curve schedule method determines the maximum amount of fuel allowed, during acceleration. This demand is driven by a configurable curve based on CDP. The CDP versus Fuel Demand accel limit curve will determine the maximum amount of fuel allowed for the current CDP.

This fuel demand limiter feeds into the LSS bus. If this value is the lowest on the LSS, then its schedule controls the LSS output. The configuration of one of these functions is required to protect the turbine from over fueling.

Exhaust Gas Temperature Limiting Control (EGT) PID

The intent of this controller is to limit the maximum Exhaust Gas Temperature of the turbine. The EGT PID block compares the actual EGT signal with the reference EGT signal and generates an appropriate output response signal. The EGT control PID is typically used as a limiter on the high end of the load curve of the turbine. It is also used in the GTC as an option on startup to limit the fuel flow until closed loop speed control can be reached. It will limit the fuel demand to the turbine once the EGT temperature reaches the EGT reference setpoint. The EGT Control PID has three inputs:

- Analog Input signal of EGT
- EGT temperature reference setpoint
- Feedback from the LSS

Temperature Rate of Change Limiting Control (EGT_DERIV) PID

The intent of this controller is to limit the maximum rate of change of the Exhaust Gas Temperature of the turbine. The EGT_DERIV PID block compares the derivative of the EGT signal with the allowable setpoint limit of the EGT rate of change signal and generates an appropriate output response signal. The EGT_DERIV control PID is typically used as a limiter on the startup of the turbine. It is used on startup to limit the fuel flow until closed loop speed control can be reached. The EGT_DERIV Control PID has three inputs:

- Derivative of the EGT value (the calculated average of all T/C's)
- EGT_DERIV temperature reference setpoint
- Feedback from the LSS

Megawatt Limiting Control (MW_LIM) PID

The intent of this optional controller is to limit the maximum MW output of the turbine/generator. The MW PID block compares the actual MW signal (calculated from the PT's & CT's) with the reference MW signal and generates an appropriate output response signal. The MW control PID is typically used as a limiter on the high end of the load curve of the turbine. It will limit the fuel demand to the turbine once the MW output reaches the MW reference setpoint. The MW Control PID has three inputs:

- Actual or calculated MW load input
- MW limiter reference setpoint
- Feedback from the LSS

Auxiliary Control #1 (AUXPID_1) PID

The intent of this controller is to provide an additional handle for the user to program additional limits into the fuel demand limiting LSS bus. The process signal, process setpoint and dynamic setting input fields will be available to the user to access via LL.

Auxiliary Control #2 (AUXPID_2) PID

The intent of this controller is to provide an additional handle for the user to program additional limits into the fuel demand limiting LSS bus. The process signal, process setpoint and dynamic setting input fields will be available to the user to access via LL.

LSS Bus

The low signal select (LSS) bus selects the lowest of the PT PID, EGT PID, EGT_DERIV PID, MW_LIM PID, Start Ramp, Accel Limiter (PID or curve schedule), AUX_1 PID and AUX_2 PID signals and passes it to the HSS bus. Whichever signal is calling for the lowest fuel is the one used for LSS bus output.

DECEL Control (Curve Schedule)

The deceleration schedule determines the minimum amount of fuel allowed during deceleration. The configuration of this function will protect the turbine from lean-blowout (loss of flame) during load transients. The demand input (forcing function) for the curve is selectable from CDP, Speed, or a Ladder Logic determined variable.

The decel limit curve will determine the minimum amount of fuel allowed based on the value of the input signal that was selected. The correct setup of the Decel control curve will result in the turbine recovering to synchronous speed after a load drop (as in a breaker open event). Without decel control the speed control will typically pull the fuel demand back to zero percent when the speed rises at the beginning of the load drop event, which can result in a flameout Shutdown of the turbine.

This fuel demand limiter feeds into the HSS bus. If the value is the highest on the HSS, then its schedule controls the HSS.

Improper setup of the Decel Control options can result in this control loop opening (or limiting closure of) the fuel valve while all other control loops are requesting minimum fuel demand.

Ladder Logic Demand #1 (AUXPID_HSS)

The intent of this block is to provide a handle for the user to program an additional limit into the fuel demand limiting HSS bus. This block will be connected to an input that will be controlled by the Ladder Logic program.

HSS Bus

The HSS bus receives the output of the LSS bus, the LL demand and the decel schedule as inputs. Whichever of these inputs is higher will be the signal sent to the output of the HSS bus. This output is responsible for setting the turbine fuel valve position to maintain the requested turbine parameter.

LSS Bus (LSS_2)

A second low signal select (LSS) bus exists downstream of the HSS. This is where the Shutdown command is invoked to chop fuel flow to the turbine.

Fuel Demand

This block is the true 0–100% fuel demand being commanded from the fuel control. All signals of the PIDs up to the LSS_2 logic are 0 to 100%. This value is sent through a curve block for each fuel type (to balance BTU outputs during online transfers) and is then output to the Actuator driver blocks.

Actuator Driver

The actuator driver output converts the 0-to-100% software control signal into a proportional actuator drive current signal. This can be configured for a 4–20 mA or 0–200 mA drive signal. An input from the shutdown input can override the control signal and cause the actuator to go to minimum-fuel position or shutdown. The shutdown circuit also has short and open coil fault detection. The actuator translates the signal from the electronic control into mechanical force to position the fuel valve. There are separate actuator drive outputs for gas and liquid fuel.

Fuel Transfer Logic

The control has the capability to run on gas or liquid fuel and the ability to make on-line fuel transfers between the two fuels. It is important to note that the packager/user will need to gather the necessary fuel property and valve flow schedule information to correctly configure the unit to make smooth on-line fuel transfers.

Flameout Detection Logic

The Flameout section of this control includes the following options:

- EGT Temperature Monitoring (Option 1)
- Flame Detectors (discrete inputs) Sensing (Option 2)
- Flame Detectors (analog inputs) to indicate flame (Option 3)

EGT Temperature Monitoring

The control uses EGT temperature logic to monitor for a 'Lite-off' detection in the combustor. This setpoint for this software switch is set at 400 °F (204 °C). If during any valid turbine running sequence the EGT temperature drops below this level, the control will consider this a lost flame condition and initiate a shutdown.

Flame Detector (Discrete Input) Sensors

If a Ultra-Violet (UV) or other type of flame detector is used, the control will monitor these discrete input signals to confirm that ignition exists in the combustor. Flame is recognized by the control by a True signal on the discrete input contacts. One to four signals are supported.

Flame Detector (Analog Input) Sensors

If analog type of flame detectors are used, the control will monitor these input signals to confirm that ignition exists in the combustor. Flame is recognized by the control by a specified (tunable) level of flame health seen by the fire-eye signals. One to four signals are supported.

Synchronization Logic

The GTC190A control uses digital signal processing techniques to derive both true RMS voltages and relative phase of the fundamental frequencies of the bus and generator voltage wave forms. Digital signal processing techniques offer significantly improved measurement accuracy in the presence of waveform distortions, particularly since the phase measurement does not depend on zero crossings of the waveforms.

GTC190A Gas Turbine Control/Generator Applications

Either **phase matching** or **slip frequency** synchronizing may be selected. Phase matching method controls the turbine speed to give zero speed error and minimal phase error between the generator and bus; this provides rapid synchronizing for critical standby power applications. Slip frequency synchronizing guarantees a fixed speed difference between generator and bus. This insures the generator to be faster than the bus and initial power flow is out of the machine for larger generators. For both synchronizing methods, the GTC190A control uses actual slip frequency and breaker delay values to anticipate a minimum phase difference between bus and generator at actual breaker closure.

The synchronizer can sense a dead local bus and close the generator circuit breaker automatically when safe to do so. The built in LON network communication port on the PowerSense module allows the GTC190A to communicate power management information between controls and assures that multiple generators cannot close simultaneously onto a dead bus.

There are four synchronizer modes of operation: Off, Check, Permissive and Run. The mode can be selected through Watch Window or Modbus. The last mode selected by any of these interface methods will be the mode of operation.

OFF	(1) Disables the function of the Synchronizer block
CHECK	(2) Actively tries to match frequency & phase but does
	NOT close breaker
PERMISSIVE	(3) Acts as a sync check relay, outputs not active, but
	breaker closure command is issued if frequency and
	phase are within window
RUN/AUTO	(4) Normal mode with active synchronizing and breaker
	control

Additional synchronizer features include: voltage matching, time delayed automatic multi-shot reclosing, and a synchronizer timeout alarm. Raise and lower inputs can be used to manually adjust speed for manual synchronizing. Voltage raise and lower inputs can be used to manually adjust voltage for manual voltage matching. Each of these features may be enabled or disabled during setup.

Load Control Options

The GTC190A control includes several different load control options:

- Simple load droop operation provides safe operation in parallel bus applications in the event of a circuit breaker aux contact failure.
- Process Control (against utility)
- VAR/Power Factor Control (against utility)
- Isochronous operation when the bus is isolated
- Isochronous Load Sharing with other units connected to the bus

When the generator circuit breaker is closed, the GTC190A can be in simple droop mode or in Isochronous Load Share mode. In the system configuration menu the user can determine the initial mode the unit will go into based upon the Generator breaker closure. The unit can go to a minimum load setpoint (manual loading) or go to a 'Base' Load setpoint programmed by the user (auto loading). Both of these are Droop mode load control loops. The user may also select that the unit stay in Isochronous mode which will allow it to immediately load share with any other units on the local bus. It will do this via the LON communication port, which interfaces to the other units. If this unit is the only one on the bus it will pick up all of the load.

Load and unload ramps provide smooth transition between autoloading, manual loading, lsochronous Load sharing and process control any time the operating mode is changed.

Process Control

A cascade process controller is provided for controlling load based on a customer input signal. A typical example of this is to use the process control for import/export control of generated power. An adjustable bandwidth input filter, flexible controller adjustments, an adjustable deadband, and direct or indirect control action, allow the process control to be used in a wide variety of applications.

A 4–20 mA process transmitter provides the process signal to the GTC190A control. The control includes an internal digital process reference setpoint controlled by raise and lower switch contacts or by a Modbus or ServLink communication interface. The output of the process control provides the cascade load reference to the Load control.

Adjustable ramps allow smooth entry to or exit from the process control mode. When the process control mode is selected, an adjustable ramp moves the load reference in a direction to reduce the process control error. When the error is minimized, or the reference first reaches either the specified high or low load pick-up limits, the process controller is activated. When unloading from the process control, an adjustable unload ramp provides time controlled unloading to the unload trip level. When load reaches the unload trip level, the GTC190A control automatically issues a breaker open command to remove the generator set from the system. The ramp pause switch input allows holding of the load ramp for cool-down or warm-up purposes.

When multiple gensets and GTC190A controls are connected to a bus in process control mode one unit is automatically assigned as the "Process Master". Its process control loop then dictates through the LON network the load levels of other gensets on the bus.

VAR/PF Control

The VAR/PF functions control the reactive power component of the generator in parallel systems. The reactive load mode can be configured for VAR or Power Factor control. The controller compares the reactive load on the generator with an adjustable internal reference and makes corrections to the setpoint of the Automatic Voltage Regulator (AVR) until the desired reactive power is obtained. The reactive power level can be maintained while also controlling real load through the generator breaker. The analog voltage bias output can be directly connected to compatible voltage regulators. The control also has raise and lower contact outputs to activate a voltage regulator MOP when an analog input is not provided on the AVR. The GTC190A control has a selectable voltage range alarm that is activated if the analog output to the voltage regulator reaches high or low saturation. The GTC190A control also has selectable and adjustable high and low voltage limit switches and alarm outputs.

The GTC190A control provides switch inputs to allow raising or lowering the generator voltage reference. The control also provides a 4–20 mA (analog input for kVAR/PF setpoint control, if desired. The kVAR/PF reference can also be set through a Modbus or ServLink DDE communication interface.

While the GTC190A is controlling unit load to accomplish real load (MW) sharing, the voltage of the generators in parallel will be controlled to accomplish equal Power Factor levels of each generator.

Generator Protection

The GTC190A control includes the following features as selection options for the user.

Power and Energy Metering

The digital signal processing techniques are used to provide significantly improved accuracy and speed of response over conventional analog measurement techniques. Accuracy is improved using rapid sampling of the voltage and current signal waveforms and developing a true RMS measurement. Measuring true RMS power allows optimal accuracy, even in the presence of power line distortions.

The PowerSense board receives the PT and CT inputs for both the generator and bus for calculation of parameters for the GTC190A to use in system control. The algorithms used are based on IEEE 1459-2000. For the generator and bus the following parameters are provided: Hz, Vac, Amps, W, VA, VAR, PF, Phase, Voltage harmonics, Current harmonics, Negative Phase Sequence Voltage, Negative Phase Sequence Current.

Available for selection at the 4-20 mA analog outputs: Synchroscope, Generator metering, Mains metering

Protective Relaying

Alarms and Trips can be configured for generator protective relay functions. Time delays for the alarm and trip thresholds can be set. The GTC190A contains programming logic to annunciate the following generator events:

- Over and Under Voltage
- Over and Under Current
- Over and Under Frequency
- Over and Under VARs
- Negative Phase Current and Voltage
- Phase Over Current
- Phase Differential Current
- Reverse Power and Over Power protection

Each of the events has an initial Warning level and an Alarm level condition that can trigger the desired action (Alarm, Open Breaker Trip, Shutdown unit Trip). Current based protections are implemented using the ANSI/IEEE C37.112 Very Inverse curve.

Distributed I/O Programming

The GTC190A control includes a dedicated Profibus interface port to interface to a pre-defined network of distributed I/O modules. At initial release this network has been designed using Allen-Bradley Flex I/O modules and Prosoft Communication heads. The control wiring in this manual illustrates the module layout including quantities and part numbers of the components. This can be purchased directly by the user or from Woodward as a complete kit.

The GTC190A GAP application contains all of the programming logic to handle the specific communications to these modules and the associated algorithms to decode the information for each channel from the Profibus protocol. The GTC190A CORE Fuel control does not utilize any of this I/O for its functionality and therefore all of this I/O has been programmed in a generic form to create an error-free interface to these signals. The intent is that the user will program the logic associated with these I/O signals in their Ladder Logic program.

All of the module and channel information needed to interface to this IO has been done in a separate GAP program. Most of the key information has been placed in B_LIST or A_LIST blocks. These blocks provide an organized way to find the required input or output fields to interface to the IO. They do nothing but pass the value from the input field to the output field of this block.

To connect the GTC190A application software to this hardware a file must be created (applicom.ply) and placed on the control in the same folder as the GAP application. This file must be generated from the Applicom CD that is supplied with the system (install Service Pack 3 from the Woodward website after installation). If the DIO hardware is supplied by Woodward, the user can use the file delivered on the control. If the user creates this file it must contain the correct Profibus configuration. Only the full layout shown in the control wiring is supported in the GTC190A, although some subsets of the layout shown can be used.

Interfacing to Ladder Logic

The GTC190A executes of a Ladder Logic (LL) application in concert with the GAP application running on the VxWorks OS. The GAP application contains a block that permits the interfacing to this external program. In addition to this a number of blocks have been added to the application in specific categories to allow LL to access some generic GAP function blocks. Ideas like placing all user accessible tunables in GAP rather than LL should help simplify the finalized site application. It is also recommended that an archived version of the LL program be placed on the Atlas hard-drive in order to better support the site in the future.

The system documentation CD contains the source codes of the Master GAP file (or sometimes called the Second-ring file) and the Fuel Control CORE file. Customers incorporating additional programming into the Atlas control will need to utilize these files. The programmer should have a good working knowledge of GAP programming and the use of the GAP editor tool, including a clear understanding of the meaning of terms template and coder versions. In most cases the GTC190A GAP file will be used as a reference in finding the software 'handles' (both input & output) of the control signals and also the tunable fields that have been programmed as being available to the Ladder Logic programming environment. Input fields that are available for LL control are identified with a boxed LL designation. The programmer can pass any GAP block output field to Ladder Logic for use in programming. The GTC190A does not include the application tool required to write the program that is intended to reside on the GTC. Additional programming help can be found in the GAP help file that will assist the programmer in interfacing the 2 programs together.

Special Features of the GTC

The GTC190A also contains a few special features that the user may be interested in using. These tools may require the user to have a deeper level of understanding of the Woodward control and software products than is required to just configure and run the unit. However, anyone capable of commissioning a unit should be able to utilize these features, and instruct others on how & when to use them.

Debug Tunables—There are additional tunables in the control application that are not available in the service and configure headers. These are intended to be used only if needed by experienced personnel. There are also numerous tunable blocks that have been setup just to be available to the LL application.

Non-Volatile Memory—The application has logic that will keep an incremental count of the following:

Number of Starts Attempted Number of Fired Starts (Start & Temp seen) Number of Shutdowns (Hard shutdowns only) Total Turbine Run Hours (Fuel On & Temperature seen) 16 additional values to come from MLL

The control will save these values periodically to a non-volatile memory location so that these values will not be lost upon a power cycle to the control. These accumulated values are sent to the Modbus list. There are tunable handles in the application to preset these accumulators to any desired value when the control is being initially installed or when the control is replaced.

Data logging—The GTC has a high-speed datalog block included in the application that allows the control to trend a pre-programmed number of parameters at a rate of 10 ms increments. These values are stored in an accumulation buffer that will retain approximately 20-100 seconds of run time, depending on how many parameters are programmed. This block is setup to automatically start once the turbine has achieved a successful start and will automatically stop the log anytime a shutdown event occurs. At this point the control will create an archive file of this data and place this file on the Atlas hard drive. On the next start the control will initiate a new datalog file and repeat the process. The files will be incremented as DATALOG_1, DATALOG_2 and DATALOG 3 and after 3 files have been created it will over-write the oldest file.

This file can be downloaded and viewed with the Control Assistant tool. This file can be very valuable in troubleshooting dynamic control issues or intermittent shutdowns.

Chapter 3. Installation and Wiring Guidelines

Introduction

For general information on unpacking the unit, mounting the unit, shielding and grounding signals refer to the Atlas-II[™] digital control manual (26415). This chapter is intended to guide the user in specific control wiring of the I/O signals used in the GTC190A application.

Electrical Connections

For noise suppression, it is recommend that all low-current wires be separated from all high-current wire.

Input and output connections to the GTC190A are made through "Screw Connection" (SmartCore A5200CPU module) or "CageClamp" terminal blocks. The GTC190A is shipped with mating connectors for all terminals. Most of the GTC190A control's terminal blocks are designed for removal by hand. After GTC190A input power is disconnected, the pluggable terminal blocks can be removed one at a time by pulling them straight out. Be careful not to pull the plug out at an angle, as this can fracture the end terminal.

Each Terminal block has a label (PS, PSEN, ANA1, ANA2, SCM or MAIN) to indicate which board it is used with, and terminal numbering to indicate which terminal block on that board to plug into. The board assemblies also are marked with a label to match with terminal block labels.

The screwless CageClamp-style blocks can be opened with a standard 2.5 mm (3/32 inch) flat bladed screwdriver (see Figure 2-2 in manual 26415). The Screw Connection style terminal blocks can be tightened using the same screwdriver as the CageClamp style. These connections shall be torqued to 0.22-0.25Nm (1.95-2.21 lb-in). The GTC190A pluggable terminal blocks accept wire 28 to 18 AWG (0.08 to 0.8 mm²). One 18 AWG (0.8 mm²) wire, or two 20 AWG (0.5 mm²) wires, or three 22 AWG (0.3 mm²) wires can be easily installed in each terminal. Wires for the pluggable I/O terminals should be stripped 8 mm (0.3 inch).

The GTC190A fixed terminal blocks used for the power supply input accept wires from 28 to 18 AWG (0.08 to 0.8 mm²). One 18 AWG (0.8 mm²) wire, or two 20 AWG (0.5 mm²) wires, or three 22 AWG (0.3 mm²) wires can be easily installed in each terminal. Wires for the fixed mounted power terminals should be stripped 5 mm (0.2 inch).

IMPORTANT

Do not tin (solder) the wires that terminate at the GTC190A terminal blocks. The spring-loaded CageClamp and Screw Connection terminal blocks are designed to flatten stranded wire, and if those strands are tinned together, the connection loses surface area and is degraded.

All ac wiring for voltages and currents is done with fixed screw barrier blocks rather than pluggable terminal blocks. The fixed screw barrier blocks accept wires terminated into terminal lugs for #6 screws.

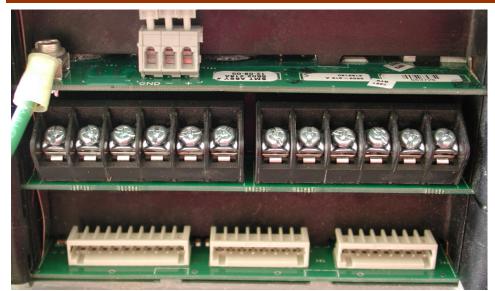


Figure 3-1. Fixed Ring Terminals

Grounding for Protection Against Electrical Shock

Protective Earth (PE) must be connected to the termination point on the backside

of the unit next to the label with the symbol $\left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right)$ (or 1 of 3 other like termination points without label) to reduce the risk of electric shock. This connection will be made using a thread-forming screw (M4 x 6 mm). The conductor providing the connection must have a properly sized ring lug and wire larger than or equal to 3.3 mm² (12 AWG).

Recommended Grounding Practices

Providing the proper ground for the GTC190A is important. Improper connection of the GTC190A chassis to the ground plane may lead to stray currents between the reference point for the ac signal sources (current and voltage transformers), and the reference point for the sensing inputs on the GTC190A. Differences in potential between these two points results in equalizing current flow which then produces unacceptably high common mode voltages. Common mode voltages may result in improper readings for the sensed ac inputs, or even damage to the GTC190A in extreme cases. To minimize this problem, it is necessary to provide a low resistance path between the ac signal reference point, and the chassis of the GTC190A. Typically this point is the designated ground for the generator set and related instrument transformers.

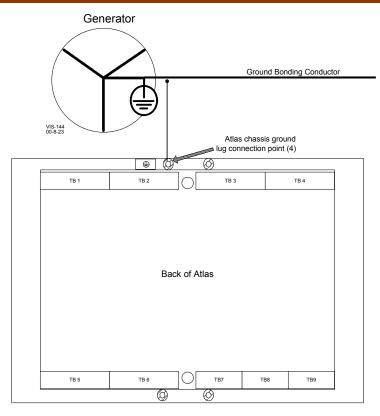


Figure 3-2. Recommended Single Point Grounding Scheme

Isolation

Figure 3-3 shows how the I/O is isolated with regard the main system power supply and other I/O types. Each input wiring diagram also shows how an input type is isolated in more detail.

Figure 3-3 uses numerals to indicate isolation grouping. Power and Ground isolation groups are indicated with a P# and G#. Every instance of the same P# and G# indicates that the item is part of the same group and not isolated from the other members of the same group. For example, all analog inputs, analog outputs, and CPUs use P9 for power and G9 for ground.

GTC190A Gas Turbine Control/Generator Applications

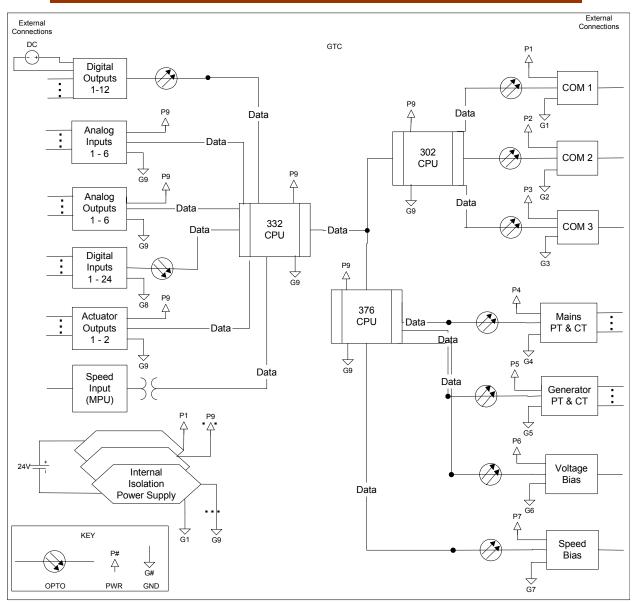
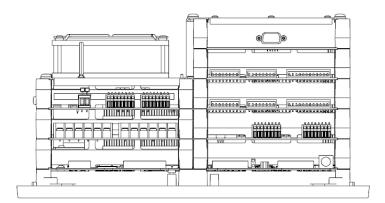



Figure 3-3. I/O Isolation

Terminal Locations

All terminals are located on the top and bottom of the GTC190A. All but the PT and CT use either a cage clamp or a pluggable terminal strip for ease of connection. Figure 3-4 shows top and bottom views of the GTC190A to help orient each of the three board positions within the control. Each boards Wiring Diagram is shown immediately following the top and bottom terminal views.

(Top View)

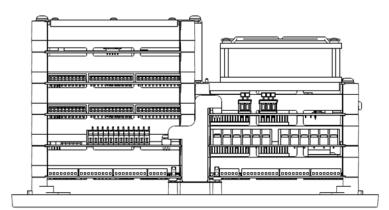


Figure 3-4. Atlas Terminal Strip Location View

Input Power

	The GTC190A power supply board must have the input power removed before installing or removing any connectors or wiring.
	This equipment is suitable for use in Class 1, Division 2, Groups A, B, C, and D, or non-hazardous locations only.
	The GTC190A is suitable for use in European Zone 2, Group IIC environments per DEMKO certification.
Wiring must be in accordance with Class I, Division 2 wiring n and in accordance with the authority having jurisdiction.	
	Do not connect more than one main power supply to any one fuse or circuit breaker.

GTC190A Gas Turbine Control/Generator Applications

The power supply and ground connections are located on the top of the GTC190A on the power supply board. The input to the Power supply must be of a low impedance type for proper operation of the control. DO NOT power a control from a high voltage source containing dropping resistors and zener diodes. If batteries are used for operating power, an alternator or other battery-charging device is necessary to maintain a stable supply voltage.

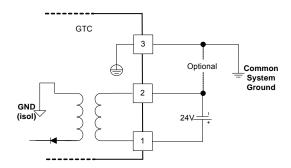


Figure 3-5. Input Power Wiring Diagram

Input Power Ratings

Voltage Range Maximum Voltage Minimum Voltage Input Current	18–32 Vdc 40 Vdc 9 Vdc (engine cranking only) 2.7A @ 24 Vdc 3.61 A @ 18 Vdc
Input Power	less than 65 W at 70°C
Typical Input Power	20 W @ 24 Vdc
Interrupt Time Holdup	8 ms @ >= 24 Vdc input voltage
Efficiency	70% minimum over operating input voltage range
Reverse Polarity Protection	56 Vdc
Input Wiring Constraints	The GTC190A must be wired such that no other device receives power from the wiring between the unit and the power supply source.
Input Wire Size Input Fuse Rating	12 AWG (2.5 mm²) 3 A (time delay with melting I²t x 100A² sec)

Significant inrush currents are possible when current is applied to the GTC190A control. The magnitude of the inrush current depends on the power source impedance, so Woodward cannot specify the maximum inrush current. Time-delay fuses or circuit breakers must be used to avoid nuisance trips.

Power Supply Monitoring Circuit

Maximum voltage measured	35 Vdc
Resolution in volts	0.15 Vdc
Maximum error due to temperature change	1.0 Vdc
Maximum error due to load change	1.0 Vdc
Total maximum error at 25 °C	1.2 Vdc

Input Power Wiring

Protective earth ground (PE) must be connected to the chassis at the labeled termination point on the back of the display. The power supply grounding terminals should also be connected to earth to ensure grounding of the power supply printed circuit boards. The grounding conductor must be the same size as the main supply conductors or the PT wires, whichever is larger.

Note that the control's power supplies are not equipped with input power switches. For this reason, some means of disconnecting input power to each main power supply must be provided for installation and servicing.

It is expected that the installation of this equipment will include overcurrent protection between the power source and the GTC190A. This overcurrent protection may be accomplished by series connection of properly rated fuses or circuit breakers. Branch circuit protection of no more than 250% of the maximum GTC190A power supply input current rating must be provided. Maximum fuse rating must meet the 250% UL listing requirements. The use of properly sized UL class CC, J, T, G, RK1, or RK5 fuses meet the requirements for branch circuit protection. Do not connect more than one GTC190A to any one fuse. Use only the wire size specified above, or equivalent, that meets local code requirements. Time delay fuses should be used to prevent nuisance trips.

The power supply holdup time specification is the time the supply will continue to operate within specification after its input power is interrupted. This information may be useful in specifying uninterruptible power supply (UPS) systems.

IMPORTANT	2.5 mm ² (12 AWG) is the largest wire gauge size that can be connected to the control power input terminal blocks.
	The minimum continuous input voltage allowed is 18 V at the power input of the control. The length, size of wire, and load current will determine the minimum supply output voltage. The minimum supply voltage measured at the source should always be greater than 18 V. Example: two (source and return) 20 foot (6 m) lengths of 14 AWG (2.5 mm ²) wire carrying 1.2 A (maximum rated current) will result in a voltage drop from source output to control power input of approx. 0.16 volts. The resulting supply voltage from the example must be greater than 18.16 volts.
	The GTC190A will remain in operation when an electrical starter is engaged, if input power drops to no less than 9.0 V.

Chapter 4. PowerSense Signal Wiring

PowerSense Board Wiring Pinout

The PowerSense board (**PSEN**) is mounted between the Power Supply and the SmartCore CPU A5200 board. The PowerSense Board inputs are the Mains and Generator power monitoring. Each PowerSense board contains the circuitry for two sets of three phase ac voltage (PT) and ac current (CT) inputs, as well as a speed bias output, a voltage bias output, and a LON communications port.

Features

- On-board processor for automatic calibration of the I/O channels
- PT and CT inputs provide fundamental as well as harmonic information
- PT and CT inputs are updated after 3 cycles, which is 50 ms at 60 Hz
- PT and CT inputs and bias outputs have 12 bit resolution
- PT inputs are software configurable for 70 V, 120 V, or 240 V ranges
- Each set of PT and CT inputs is isolated from the rest of the board and chassis
- Speed bias output is software configurable for 4–20 mA, 0–5 V, PWM, or ±3 V output
- Voltage Bias output is software configurable for 4–20 mA, ± 1 V, ± 3 V, and ± 9 V
- Speed Bias and Voltage bias outputs are isolated from the rest of the board
- LON communication port

Potential Transformer (PT) Inputs

The Generator and Mains ac voltage inputs can accept voltages up to 300 Vac RMS maximum between the positive and negative terminals of each input. The inputs may be connected line-to-line or line-to-neutral. For example, if the inputs are connected line-to-neutral, each input A-N, B-N, and C-N may have up to 300 Vac. Therefore, a 480 Vac generator may be wired to the GTC190A using line-to-neutral connections resulting in 277 Vac at the inputs.

Input Voltage Range Selections	70, 120, 240 Vac RMS
Max. Input Voltage	300 Vac
Input Current	3 mA maximum
Input Frequency	40–70 Hz
Common Mode Rejection Voltage	±450 Vdc minimum
Common Mode Rejection Ratio	-63 dB minimum

The GTC190A must be configured for a voltage range relative to the input (Potential Transformer secondary) provided. For example, if a phase (+) to phase (-) input to the GTC190A is to be a nominal of 70 Vac, set the range to the 70 volt range. No change in wiring is necessary. This configuration setting maximizes the accuracy for the voltage level being sensed. There is also a voltage floor below which a voltage cannot be detected so setting the correct range is important for more than just accuracy. See the table below for the voltage floor at each range.

GTC190A Gas Turbine Control/Generator Applications

Voltage Range	Dead bus Voltage Detected	Maximum Voltage Detected
70	27 Vac	100 Vac
120	40 Vac	150 Vac
240	80 Vac	300 Vac

If potential transformers are used, be careful to select an accurate transformer. The largest source of inaccuracy in the system will be the transformer, since even the most accurate transformer is less accurate than the ac voltage inputs to the GTC190A. The calibration menu contains turns ratio compensation factors for each PT input. Follow the calibration procedure to negate much of the transformer error.

When the PT input to the control is conditioned with a transformer the generator and mains transformer ratio is entered into the GTC190A. This is described in the Configuration section of the Operation Manual. The GTC190A will use the PT ratio and the entered configured Range to calculate the actual system voltage(s).

EXAMPLE:

Hwd range = 120 PT ratio = 4 Measured PT secondary (input at terminals) = 112.5 Vac The GTC190A will display 450 Vac for this input voltage.

Hazardous Live

The following circuits are classified as Hazardous Live because they carry potential shock hazardous voltages during normal operation or under single fault conditions:

- Potential transformer (PT) inputs
- Current transformer (CT) inputs
- Voltage bias outputs

HIGH VOLTAGE—Do not touch or make contact with the above inputs and outputs during system operation when such circuits are live. Possible serious personal injury or death could result.

These inputs and outputs are provided with 500 V of dielectric isolation from chassis ground. In addition, these inputs/outputs are isolated from safety extralow voltage (SELV) circuits (such as serial communication, PC/104 circuits) by optoisolators or transformers provided with double insulation and 3 000 Vac of dielectric isolation.

PT—3Ø Wye, L-N, No Transformers

No transformers are necessary if the voltage input to the GTC190A is less than 300 Vac at a given phase input. This diagram shows a system where both the generator and bus are less than 300 Vac measured line-to-neutral. Each is connected to the GTC190A in a L-N mode without transformers (PT Ratio = 1:1). It is not required that both the mains and the generator inputs be connected in the same manner. One could be L-L and the other L-N if preferred. Also, one could use transformers and the other not. The diagram shown is simply an example of a typical system.

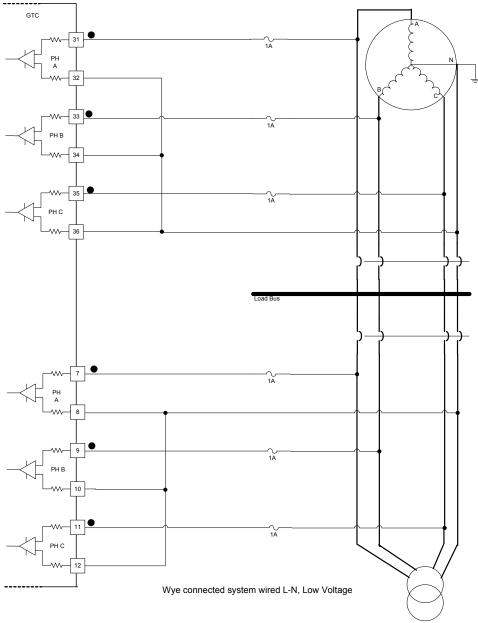


Figure 4-1. PT Wiring—3Ø Wye, L-N, without Transformer

PT—3Ø Wye, L-N, with Transformers

Transformers are necessary if the voltage input to the GTC190A is greater than 300 Vac at a given phase input or a customer preference. This diagram shows a system where both the generator and bus utilize potential transformers. Each is connected to the GTC190A in a L-N mode. It is not required that both the mains and the generator inputs be connected in the same manner. One could be L-L and the other L-N if preferred. Also, one could use transformers and the other not. The diagram shown is simply an example of a typical system.

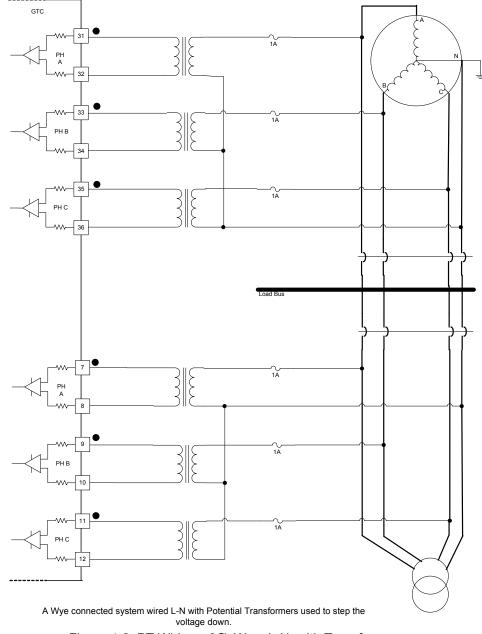
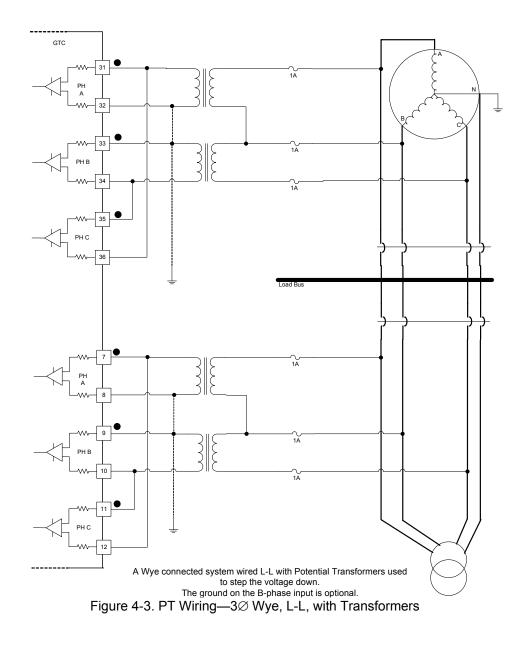



Figure 4-2. PT Wiring-3Ø, Wye, L-N, with Transformer

PT—3Ø Wye, L-L, with Transformers

Transformers are necessary if the voltage input to the GTC190A is greater than 300 Vac at a given phase input or a customer preference. This diagram shows a system where both the generator and bus utilize potential transformers. Each is connected to the GTC190A in a L-L mode utilizing open delta wired transformers. It is not required that both the mains and the generator inputs be connected in the same manner. One could be L-L and the other L-N if preferred. Also, one could use transformers and the other not. The diagram shown is simply an example of a typical system. Notice for this configuration that the generator is a Wye, but the potential transformers are connected in a L-L fashion, so the GTC190A should be configured as a Delta L-L.

PT-3Ø & 1Ø Inputs, Wye, L-L with Transformers

Transformers are necessary if the voltage input to the GTC190A is greater than 300 Vac at a given phase input or a customer preference. A single phase monitoring system may be wired either L-L or L-N. The B and C phase inputs will be ignored and do not need to be wired. Single phase mode must then be selected in the software configuration.

The generator and mains do not have to be configured identically. One can use single phase and the other can use three phase if preferred. The below wiring diagram example shows the generator wired $3\emptyset$ with open delta transformers from a Wye system. It also shows the mains wired $1\emptyset$ with a step down transformer wired L-L.

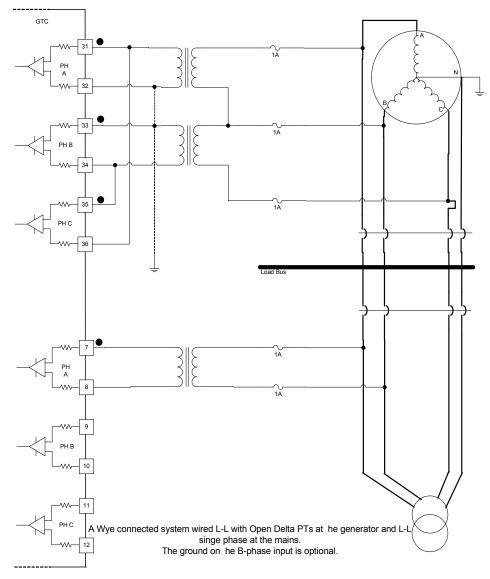


Figure 4-4. PT Wiring—3Ø Wye, & 1Ø Wye, L-L, with Transformers

PT-3Ø Input, Delta, L-L Connection with Transformers

Transformers are necessary if the voltage input to the GTC190A is greater than 300 Vac at a given phase input or transformers may be used per customer preference. This diagram shows a system where both the generator and bus utilize potential transformers. Each is connected to the GTC190A in a L-L mode utilizing open delta wired transformers. It is not required that both the mains and the generator inputs be connected in the same manner. One could use transformers and the other not. The diagram shown is simply an example of a typical system.

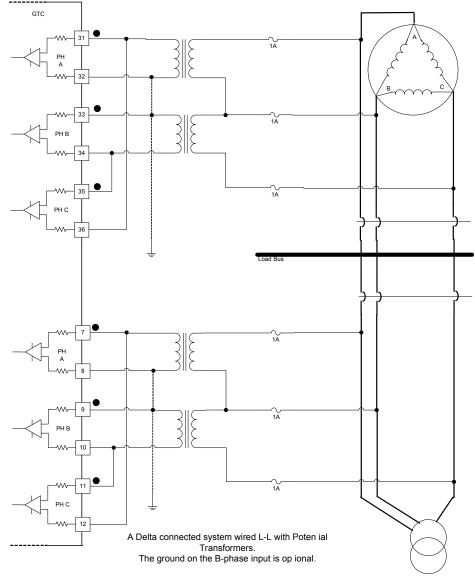


Figure 4-5. PT Wiring—3Ø Delta, L-L, with Transformers

PT-3Ø Input, Delta, L-L Connection without Transformers

Transformers are necessary if the voltage input to the GTC190A is greater than 300 Vac at a given phase input or a customer preference. This diagram shows a system where the generator and the bus do not utilize potential transformers. Each is connected to the GTC190A in a L-L mode. It is not required that both the mains and the generator inputs be connected in the same manner. One could use transformers and the other not. The diagram shown is simply an example of a typical system.

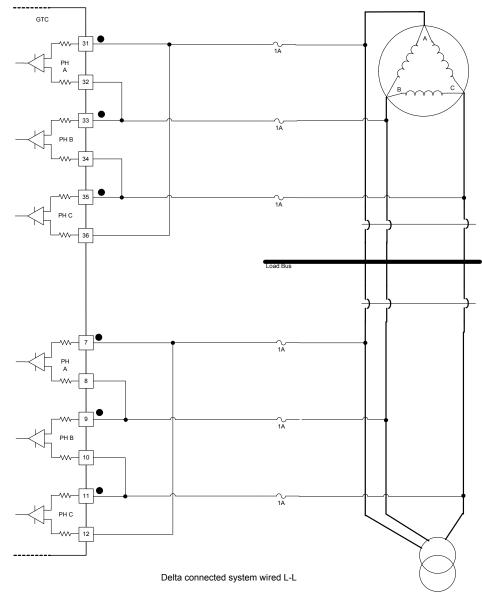


Figure 4-6. PT Wiring—3Ø Delta, L-L, without Transformers

Current Transformer (CT) Inputs

The Generator and Mains ac current inputs can accept currents up to 7 A ac RMS maximum between the positive and negative terminals of each input. The CT inputs are rated at 5 A ac RMS nominal and function down to 50 mA. For optimum accuracy in the usable range, it is recommended to use 5 A secondary CTs (Do not use 1 A secondary CTs).

Input Current	5 A RMS full scale
Max. Transient Input Current	7.07 A RMS
Input Frequency	40–70 Hz
Common Mode Voltage	±250 Vdc minimum
Common Mode Rejection Ratio	–63 dB minimum

Be careful to select an accurate current transformer. The largest source of inaccuracy in the system will be the transformer since even the most accurate transformer is less accurate than the AC current inputs to the GTC190A. The calibration menu contains turns ratio compensation factors for each CT input. Follow the calibration procedure to negate much of the transformer linear error.

The GTC190A does not require three phases for current calculations. The user can configure the GTC190A for single phase, and all functionality will be modified accordingly. The phase input that must be provided is the A phase.

The generator and mains Current Transformer ratio is entered into the GTC190A. This is described in the Configuration section of the Operators Manual (26137). The GTC190A will use the CT ratio to calculate the actual system current(s).

EXAMPLE:

CT ratio = 500 Measured CT secondary (input at terminals) = 3.9 A The GTC190A will display 1950 A ac for this input current.

For a full wiring connection, combine the Current Transformer (CT) wiring below with the Potential Transformer (PT) section above.

CT—3⊘ Wye

This diagram shows the generator and mains in a wye configuration. The current transformers are placed on the leads connecting to the load. The diagram shown is simply an example of a typical system.

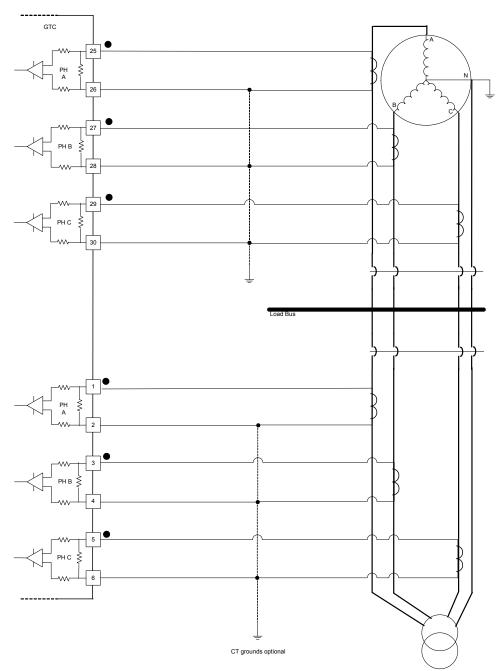


Figure 4-7. CT Wiring—3Ø Wye

CT—3Ø Delta

This diagram shows the generator and mains in a delta configuration. The current transformers are placed on the leads connecting to the load. The diagram shown is simply an example of a typical system.

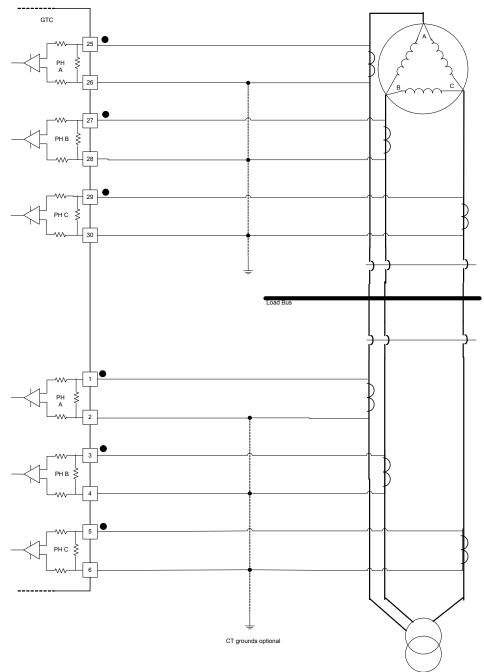


Figure 4-8. CT Wiring—3Ø Delta

Single Phase Monitoring

In a single phase monitoring system, the GTC190A will only use the A phase CT input. Anything connected to the B and C phase inputs will be ignored. The current transformer is placed on the A phase leads connecting to the load. See the appropriate diagram above and ignore the B and C phase inputs. For a single phase input, the PT and CT must be monitoring the same phase. During control Configuration the software must be selected to use Single Phase. The single phase monitoring is applied to 3 phase machines, it is not intended for single phase machines.

The GTC190A power calculations are based on a per-phase calculation. When a single phase input is used the displayed values will be 1/3 of the total devise levels. Therefore the entered CT ratio or the total power level(s) for the mains or generator will have to be adjusted to display actual $3\emptyset$ devise power levels.

Speed Bias Output

The Speed Bias output is not used on the GTC190A and is a variable configuration analog output signals that can be used by the customer.

Voltage Bias Output

The Voltage Bias allows the GTC190A to vary the generator voltage level to control the reactive load on the generator. The Voltage Bias can be configured as one of four types of outputs: 4-20 mA, $\pm 1 \text{ V}$, $\pm 3 \text{ V}$, $\pm 9 \text{ V}$. The output mode selected should be determined based on the voltage regulator specifications. Minimum to maximum voltage bias output change from the GTC190A should be approximately $\pm 10\%$ change in rated generator voltage. Both the configuration and the wiring must be changed to switch between current and voltage outputs. Only the configuration must be changed to switch between the differing voltage outputs.

PWM frequency Current output Voltage output	3 kHz for current and voltage outputs 4–20 mA selected by software switch and wiring ±1, ±3, ±9 Vdc selectable by software switch and wiring
Max current output 4–20 mA output	25 mA ±5%
Max voltage output	25 IIIA 15 //
$\pm 1, \pm 3, \pm 9$ Vdc	±9 V limit ±5%
Isolation	
Max load resistance	See HAZARDOUS LIVE isolation requirement
4–20 mA	300 A at 24 mA
±1, ±3, ±9 Vdc	No maximum
Min load resistance	
4–20 mA	•
±1, ±3, ±9 Vdc output	7 ΚΩ
Resolution	
4–20 mA	12 bits
±1 V output	>7 bits
±3 V output	>9 bits
±9 V output	12 bits
Accuracy	Better than ±0.1% of full scale @ 25 °C
4–20 mA	•
±1 V, ±3 V, ±9 V output	±0.018 V
Temperature Drift	20.010 1
Voltage outputs	330 ppm/°C, maximum
4–20 mA output	140 ppm/°C, maximum

Figure 4-9. Voltage Bias Wiring Diagram, 4-20 mA Output

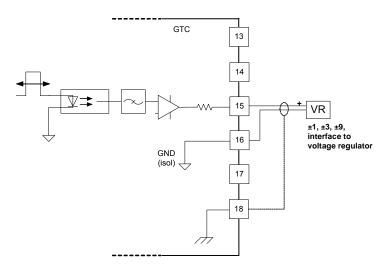


Figure 4-10. Voltage Bias Wiring Diagram, Bi-polar Voltage Output

LON Communication Port

The LON port is used to communicate with up to 16 other GTC190A devices. The LON allows controls to share breaker status and load share information between generator sets. The LON communication is also compatible with Digital Synchronizer and Load Control (DSLC[™]) devices. When a GTC190A is the last device of the LON string, the termination jumper at terminals 48 and 49 should be installed.

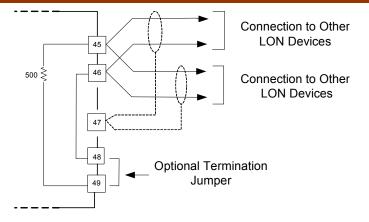


Figure 4-11. LON Connections

Use only recommended shielded cabling for LON network. Correct cable is available from Woodward, Belden, or other suppliers providing an equivalent cable.

Woodward part number 2008-349

Belden PO Box 1980 Richmond IN 47375 Telephone (317) 983-5200

Belden Part

Number	Description
9207	PVC 20 AWG shielded. NEC Type CL2, CSA Cert. PCC FT 1.
89207	Teflon 20 AWG shielded, Plenum version. NEC Type CMP, CSA Cert.
	FT 4.
YR28867	PVC 22 AWG shielded.
YQ28863	Plenum 22 AWG shielded.

Recommended cable length and stub length of LON network wiring.

System Ambient				
Temperature Range:	0 to 55 °C	–20 to +55 °C	–40 to +55 °C	
Maximum Network Cable Length	150 m	150 m	50 m	
Maximum Stub Length	300 mm	300 mm	300 mm	



Figure 4-12. Direct Wired LON Network

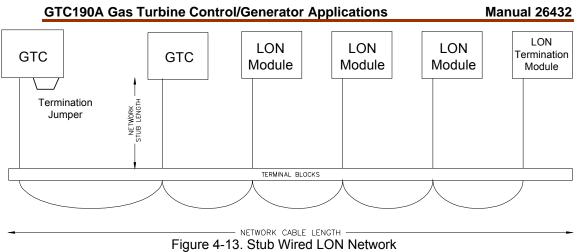


Figure 4-13. Stub Wired LON Network

It should be noted that in some installations there may be a combination of systems that may or may not be able to communicate via the Woodward product LON network. In those cases the user can opt to use a Woodward Load Sharing Interface Module (LSIM – p/n 8239-082). This device provides an analog to LON communication gateway which allows analog load sharing units to join a LON type of load sharing network. This device is self-configuring and self-binding but does have some limitations in that it only supports load sharing between the units. It does not support VAR/PF control through the LON.

Chapter 5. Control Signal Wiring

Introduction

A detailed list of the Atlas-II[™] I/O signal layout including channel allocation, wiring terminations, descriptions, and range information is found in Appendix A. This chapter describes details of the signals that the GTC190A is programmed to handle. The control wiring diagrams in Appendix A also identify which signals are required and which are optional. The details below show the '**Programmed Default**' functions of the GTC190A input/output channels. This section should be used in conjunction with Appendix E which lists the information that the user will see on the Service and Configure screens when using Watch Window to configure the control. Appendix E will guide the user in the specific detailed configuration options of the control for each turbine. Most of the I/O channels in the GTC190A have been programmed with 3 options:

- GTC Used—as per default allocation below and in Appendix A
- Customer Use—custom signals for pre-programmed options
- Not Used

Fuel Control Input/Output Signals

SmartCore CPU A5200 Board Wiring Pinout

The SmartCore CPU A5200 board (**SCM or MAIN**) contains circuitry for the two speed sensor inputs, four Ethernet ports, six analog inputs, six analog outputs, two serial ports, two actuator outputs, two CANbus ports and 24 discrete inputs. The speed sensor input is from a magnetic pick-up, each Analog input is a 4–20 mA, and the two serial ports, may be RS-232, RS-422, or RS-485.

Features

- On-board processor for automatic calibration of the I/O channels
- Analog inputs have 14-bit resolution
- Analog outputs have 12-bit resolution
- Actuator outputs have 12-bit resolution
- Serial Ports are configurable

MPU (Speed) Inputs

The GTC190A accepts passive magnetic pickup (MPU) inputs for speed sensing. It is not recommended that gears mounted on an auxiliary shaft be used to sense speed. Auxiliary shafts tend to turn more slowly than the rotor or crankshaft (reducing speed sensing resolution) and have coupling gear backlash, resulting in less than optimum speed detection. For safety purposes, it is also not recommended that the speed sensing device sense speed from a gear coupled to a generator or mechanical drive side of a system.

GTC190A Gas Turbine Control/Generator Applications

Input frequency Input amplitude Input impedance Isolation voltage Resolution

Accuracy

100–24 950 Hz 1–25 Vrms 2 k Ω 500 Vac minimum, each channel is isolated from all other channels Dependent on frequency, 13 bit minimum at maximum speed Better than ±0.08% full scale from -40 to +85 °C internal temperature

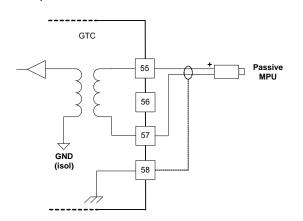


Figure 5-1. MPU Wiring Diagram

Speed Sensing (DSS_01 through DSS_06)

The function of speed sensing is to monitor turbine speed. The sub-functions are:

- Speed Sensors
- Speed Derivative
- Sensor Fault Detection
- Speed Switches

Speed Sensors

There are up to 4 speed sensors in this system for sensing the PT shaft speed. One to four can be used. There are 2 additional speed input channels that are available for the customer to use. The digital speed sensor I/O board receives input from the speed sensors on the turbine and converts this speed signal to a usable form for the control. The two speed signals are high signal selected with only the one indicating the higher speed being sent to the control PID.

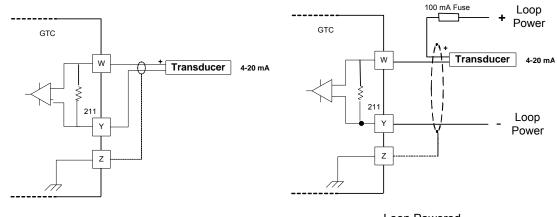
Speed Derivative

The speed sensor input blocks also generate a derivative of the speed, which gives the control a high frequency calculation of the rate of change in speed over time. This signal is high signal selected, and this value is used to control acceleration and deceleration of the turbine.

Sensor Fault Detection

Sensor fault detection is done in the application software. On detection of a sensor fault, a signal is generated for activation of associated indicators and alarms. Failure of both PT signals will cause a shutdown. An alarm also exists for annunciating a speed difference between redundant sensors.

Speed Switches


In the software there are three speed switches for PT. These speed switches are configurable for any speed and can be used to drive relay outputs. These outputs can be used by other systems. There is also an overspeed switch for PT which will trigger a Shutdown. Each of these switches can be configured to activate at any speed.

Analog Inputs

The Analog Inputs are current type. When the GTC190A inputs are configured (see Operator Manual), the engineering unit values are entered for the sensor at minimum (4 mA) and at maximum (20 mA).

The Analog Inputs may be used with a two-wire ungrounded (loop powered) transducer or isolated (self-powered) transducer. See transducer wiring below for typical wiring. If interfacing to a non-isolated device that may have the potential of reaching over 10 Vdc with respect to the control's common, the use of a loop isolator is recommended to break any return current paths, which could produce erroneous readings. Loop power must be provided from an external source.

Number of channels	6
Input type	4–20 mA
Max. Input current	23 mA
Common mode rejection	80 dB minimum
Input common mode range	±40 V minimum
Safe input common mode volt	±40 V minimum
Input impedance	211 Ω (±1.3%)
Anti-aliasing filter (ch1-4)	2 poles at 10 ms
Anti-aliasing filter (ch5-6)	2 poles at 5 ms
Resolution	Greater than 16 bits
Accuracy @ 25 °C	Better than ±0.1% of full scale
Temp Drift	171 ppm/°C, maximum (1.1% of full scale, 0.275 mA)
	30 ppm/°C, typical (0.20% of full scale, 0.05 mA)

Self powered

Loop Powered

Figure 5-2. Analog Input Wiring Diagram; 4–20 mA

Analog Inputs (AI_01 through AI_16)

The analog input signals in the GTC190A application are allocated in the following way:

- 16 Analog 4–20 mA inputs
- 12 PT and CT Inputs—three each for the Generator & Utility Bus

Each channel can be used for a pre-programmed GTC function or they can be configured to handle customer-defined inputs. If the input is used for a customer-defined signal the control has built in options for:

- 1. Annunciation of a failed signal as an Alarm or a Shutdown
- 2. The setting of a signal level that triggers an 'event' (ALM or SD)
- 3. Monitoring of the signal and output of the value via Modbus

The user also has the ability to access these inputs from Ladder Logic and perform any logic functions that are required.

Process Control Input Sensor – (Option Chan#01)

The process input signal is available for applications that plan to use the turbine load capability to control a plant determined parameter. The control can be setup to control this value to a programmed setpoint. The GTC will then use is output to determine the turbine load setpoint.

Remote Speed Reference - (Option Chan #02)

The speed reference produces the desired speed-setting signal and sends it to the speed controller. The sub-functions are:

- Speed Setting
- Remote Speed Setting (PT only)

Speed Setting

The speed setting is raised or lowered by closing the associated contact or by commands through the Modbus communication link. The rate at which the reference changes can also be selected. The speed reference has both an upper and a lower limit position. The speed setting at each of these positions is a tunable value. The speed reference also includes relay options to indicate when that speed reference is at the lower limit.

Remote Speed Setting

The speed setting can be controlled by a remote signal. The ENABLE contact enables remote speed setting, as long as the speed is above rated speed. When enabled, the speed setting can be changed by varying a remote 4-to-20 mA signal. At this time all PT associated switch contacts (RAISE, LOWER, FAST, and INSTANT) will be disabled.

Remote Process Reference Setpoint - (Option Chan#03)

A remote Process reference setpoint can be brought back into the control via a 4to-20 mA signal. This value is used as the setpoint for the Process controller.

Ambient Temperature Sensor - (Option Chan#04)

The control is designed to receive an ambient temperature signal via a single 4–20 mA input, a thermocouple input, or via an RTD input.

It is very common for this ambient temperature to be sensed by an AD590. There is an optional kit item that can be included with the GTC products to convert this signal. The AD590 microamp signal is converted to a milliamp signal through the Moore Industries device. This device has been programmed with a microamp-to-milliamp/temperature conversion chart that converts the value into a 4–20 mA signal.

The ambient temperature sensor signal is converted to a digital signal in the Atlas-II Digital Control System and can be configured to bias the EGT temperature reference and the Acceleration limiter curve. If the ambient temperature input signal fails, a fixed-value signal (tunable) is used as the bias signal.

Remote VAR/PF Reference - (Option Chan#05)

For units that include the PowerSense module, a remote VAR or PF reference setpoint can be brought back into the control via a 4-to-20 mA signal. This value is used as the setpoint for the Reactive Load controller.

Exhaust Gas Temperature – EGT (Option Chan#06)

The EGT section of this control includes the following sub-sections:

- EGT Sensing
- Temperature Reference
- Temperature Switch Output Relay Signals

EGT Sensing

This input is programmed to receive a single 4–20 mA input that senses the EGT if T/C input signals are not brought directly into the control. The system feeds the temperature information from this signal to the three temperature switches, the overtemp switch, and the EGT control PID.

Temperature Reference

The EGT Reference is set by a tunable variable and can be configured to use an ambient temperature bias. There is an option to use the EGT control for starting the unit.

Temperature Switches

In the software there are three temperature switches for the EGT. These temp switches are configurable for any temperature setpoint and can used to drive relay outputs. These outputs can be used by other systems.

Compressor Discharge Pressure – CDP or PCD (Option Chan#07)

The compressor discharge pressure (CDP or PCD) is sensed by a 4-to-20 mA pressure transducer. This value is then used by the control for pressure control and/or as a forcing function for some of the fuel limiting schedules.

Remote MW Reference - (Option Chan#08)

A remote MW reference setpoint can be brought back into the control via a 4-to-20 mA signal. This value is used as the setpoint for the MW Load controller.

P1 Gas Pressure Sensor - (Option Chan#09)

This input is available to bring in the inlet gas fuel supply pressure at P1, the upstream or inlet side of the gas fuel metering valve.

P2 Gas Pressure Sensor A/B - (Option Chan#10 and #11)

These inputs are available to bring in redundant signals of the gas fuel pressure at P2, the downstream or outlet side of the gas fuel metering valve. Either one or both can be used and the user can configure how to choose between these sensors when a difference exists.

Compressor Discharge Pressure – CDP or PCD (Option Chan#12)

This channel is available as a redundant compressor discharge pressure (CDP or PCD) signal transducer. The selected value of these 2 signals is configured by the user, and this value is then used by the control for pressure control and/or as a forcing function for some of the fuel limiting schedules.

Analog Flame Detector Signals - (Option Chan#13,14,15,16)

The GTC is design to receive either discrete input or analog flame detector signals. If the analog signals are used they are connected to these channels. One, two, three or four can be used and they are needed to verify that a healthy flame exists inside of the turbine combustor. This signal is used to detect 'light-off' of the turbine during the start and ignition sequence and it is also used as a potential shutdown (loss of flame) condition.

Customer Defined Signal - (On any unused channels)

The customer can bring in a 4-20 mA signal for any site specific parameter that they desire. The GTC application is designed to allow a configurable switch to be activated by this input value. This event action can be configured as an Alarm or a Shutdown. The user can configure the loss of this input signal to trigger either an Alarm or a Shutdown.

Discrete Inputs

There are 24 discrete inputs which are all individually optically isolated; however, all 24 share a common power supply return. The inputs expect 24 Vdc for an asserted state.

Number of channels	24
Input type	Optically isolated discrete input
Input thresholds	< 8 Vdc = "OFF"
	> 16 Vdc = "ON"
Input current	3 mA @ 24 Vdc
Contact voltage	24 Vdc isolated
Max input voltage	28 Vdc
Isolation voltage	500 Vac, all channels are isolated from the other I/O

An external 18–28 Vdc power source can be used to source the circuit wetting voltage for the discrete inputs. Due to circuit isolation, the external power supply common must be connected to the GTC190A terminal 25 as shown in the wiring diagrams in Appendix A. However, for EMC Compliance, the on board, isolated, +24 Vdc supply is recommended for use as the contact wetting voltage. The internal supply should only be used for the discrete inputs as shown in the diagrams; use in other, unrelated, circuits could overload the supply or create ground loops. The internal, isolated, supply is limited to approximately 300 mA maximum.

Discrete Inputs (BI_01 thru BI_24)

These twenty-four discrete inputs are available as direct inputs into the Atlas-II I/O. These 'high-speed' input signals are used to direct the actions and functions of the fuel control. The first 3 inputs are fixed and can only be used for the function shown. All other inputs (4-24) are configurable to be used for the function shown or to be used for custom signals. If the discrete inputs is used for a custom signal, the have been pre-programmed with the following optional functionality:

- 1. A Start Permissive Input
- 2. An Alarm Condition Input
- 3. An Shutdown Condition Input

The default function and active state of each of these signals is shown, these can be altered in the configuration of the control. The signal status of each input will be sent through the Modbus communication link as indications.

GTC Function

- 1. Shutdown (Fuel Off)
- 2. Start/Run (ON to Run) Stop)
- 3. System Reset (ALM & SD)
- 4. System Acknowledge (ALM & SD)
- 5. PT Reference Lower
- 6. Speed Reference Raise
- 7. Speed Reference Select Fast Rate
- 8. Speed Signal Failed Override
- 9. Set PT Reference to Rated Speed
- 10. Enable Process Control
- 11. Enable Reactive Load Control
- 12. Enable Remote PT Reference Setpoint
- 13. Inhibit Synchronizer
- 14. Generator Breaker Aux (52)
- 15. Utility Breaker Open
 - for LS)

Active State

- * TRUE = Shutdown / Fuel OFF
- * TRUE = Start / Fuel ON, (False = Normal
- * TRUE = Reset Alarm/Shutdown
- TRUE = Acknowledge Alarm/Shutdown
- TRUE = Lower PT Speed Setpoint
- TRUE = Raises PT Speed Setpoint
- TRUE = PT Speed Setpoint Rate = Fast
- TRUE = Override PT sensor failure (to Start)
- TRUE = PT Ref is set to Rated Speed
- TRUE = Enable Process Control
- TRUE = Enables unit VAR/PF Control
- TRUE = Actively follow remote setpoint
- TRUE = Disable Synchronization logic
- TRUE = Generator Breaker CLOSED
- TRUE = Utility Breaker OPEN (Permissive

GTC190A Gas Turbine Control/Generator Applications

- 16. Fuel Selection/TransferTRUE = Liquid Fuel (False = Gas Fuel)17. Voltage/VAR/PF Lower CommandTRUE = Lower the Reactive Load setpoint18. Voltage/VAR/PF Raise CommandTRUE = Raise the Reactive Load setpoint
- 19. Process Setpoint Lower Command TRUE = Raise the Reactive Load setpoint TRUE = Lower the Process setpoint
 - and TRUE = Lower the Process setpoint nd TRUE = Raise the Process setpoint
- 20. Process Setpoint Raise Command
- 21. Combustor Flame Detector A
- 22. Combustor Flame Detector B
- Combustor Flame Detector C
 Combustor Flame Detector D
- TRUE = Flame Detected TRUE = Flame Detected TRUE = Flame Detected
- TRUE = Flame Detected

Discrete Outputs

There are 12 discrete output relay drivers, which are individually optically isolated, available from the Atlas-II I/O. However, all twelve share a common power supply and return circuit. Each output uses a thermally protected MOSFET that will pulse the circuit if the current limit is exceeded. An over-current condition on one output will not affect the other outputs. The output will be pulsed continuously until the current requirement is reduced, allowing the output to operate normally again.

12
Low-side driver with short circuit and over voltage
protection
<200 mA
9-32 Vdc
500 Vac, all channels are isolated from the other I/O

An external 9–32 Vdc power source must be provided to source the circuit voltage switched by the GTC190A. Due to circuit isolation, the external power supply common must be connected to the GTC190A terminal 23 as shown in the wiring diagrams in Appendix A.

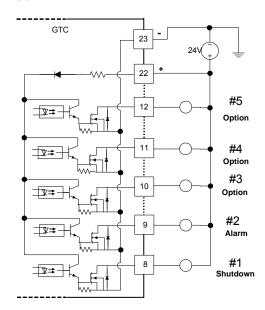


Figure 5-3. Discrete Output Wiring Diagram

Relay Driver Outputs

Twelve relay driver outputs are available from the GTC190A application. These signals are used to indicate the function or status of the control or turbine. The first two relay outputs are for SHUTDOWN and ALARM and fixed outputs. The SHUTDOWN signal (1) is normally energized to reflect a healthy GTC190A with no shutdowns present. The ALARM signal (2) along with all of the others is normally de-energized, and the control energizes this output on one of 2 configurable conditions: 1) Alarm summary – meaning that the output is true when any alarm is present or 2) Alarm Horn indication – meaning that when an Alarm event comes in, the output is True until an Acknowledge input is received, then the output goes False until another alarm condition happens. The other ten signal outputs are configurable via a menu (as per the list below) for each relay output to be driven from a pre-programmed function in the fuel control, or to be driven via a Modbus or Ladder Logic command.

IMPORTANT

When configuring these output drivers, use these relays for the most critical (time dependent) signals, such as fuel shutoff valve commands. These channels are all programmed to be updated a recursion rate of 10 ms.

- 1) SHUTDOWN
- 2) ALARM
- 3) EGT Temp Switch 1
- 4) EGT Temp Switch 2
- 5) EGT Temp Switch 3
- 6) PT Speed Switch 1
- 7) PT Speed Switch 2
- 8) PT Speed Switch 3
- 9) PT Speed Reference at Lower Limit
- 10) Open Breaker Command
- 11) Close Breaker Command
- 12) Raise Voltage Command to AVR
- 13) Lower Voltage Command to AVR
- 14) Speed in Control
- 15) EGT in Control
- 16) EGT Derivative in Control
- 17) Process Control Enabled
- 18) Load Sharing Enabled
- 19) HP Compressor Bleed Valve Command
- 20) LP Compressor Bleed Valve Command
- 21) Liquid Fuel Selected (off = On Gas Fuel)
- 22) Motor Starter Engaged
- 23) Turning / Ratchet Gear ON
- 24) Ignitors Energized (ON)
- 25) Open Gas Fuel Shutoff Valves
- 26) Open Liquid Fuel Shutoff Valves
- 27) Remote Fuel Driver Reset Command
- 28) Customer Command from Modbus BW 21
- 29) Customer Command from Modbus BW 22
- 30) Customer Command from Modbus BW 23
- 31) Customer Command from Modbus BW 24
- 32) *FALSE (Access for LL to control this output)

Actuator Driver Outputs (ACT_01 and ACT_02)

This system includes two actuator drivers, one for the gaseous-fuel actuator (ACT_01) and one for the liquid-fuel actuator (ACT_02). Each of the actuator drivers receives a fuel demand signal and sends a proportional drive current signal to its actuator. Each actuator, in turn, controls the flow of one type of fuel. The outputs are configurable as 4–20 mA or 0–200 mA. These outputs are proportional drivers only—if integrating drivers are required, use the Woodward Servo Position Controllers (SPC) that can be connected to the GTC via a analog signal link.

Number of channels	2
51	Proportional, non-isolated
1 11	4–20 or 20-200 mA outputs, software selectable
	15 Vdc ±10%
Max current output	27 mA ±5% (4-20 mA scale)
	218 mA ±5% (20-200 mA scale)
Min. load resistance	10 Ω
Max load resistance	300 Ω at 22 mA (4-20 mA scale)
	40 Ω at 200 mA (20-200 mA scale)
Resolution	15 bits of full scale
Accuracy @ 25 °C	Better than ±0.1% of full scale
	0.029mA (4-20 mA scale)
	0.220mA (20-200 mA scale)
	1.0% of full scale
Temperature Drift	140 ppm/°C,
	0.26 mA maximum (4-20 mA scale)
	2.00 mA maximum (20-200 mA scale)
	70 ppm/°C, typical (0.45% of full scale)
	0.13 mA maximum (4-20 mA scale)
	1.00 mA maximum (20-200 mA scale)
Readbacks	Actuator source and return currents
Dither Current	25 Hz, fixed duty cycle, software variable amplitude

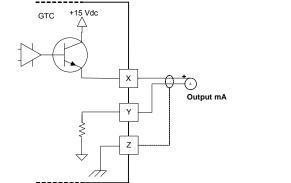


Figure 5-4. Actuator Output Wiring Diagram

Gas Fuel Valve Position Demand (ACT_01, SPC_01, GSV_01)

The gas fuel valve position demand is output from the control via this actuator output channel The actuator output can be a 4-20 mA or 20-200 mA signal from the control to the valve driver or to the valve itself.

Liquid Fuel Valve Position Demand (ACT_02, SPC_02)

The liquid fuel valve position demand is output from the control via this actuator output channel. The actuator output can be a 4-20 mA or 20-200 mA signal from the control to the valve driver or to the valve itself.

Analog Outputs

There are eight analog outputs that may be assigned to a number of functions. Each output is a 4–20 mA current source. The Analog Outputs may be used with a two-wire ungrounded device or isolated device. If interfacing to a non-isolated device, the use of a loop isolator is required. The chart below gives the parameters that may be configured for analog output, The scale or range of each parameter can also be changed, i.e. a frequency read out may be set for 57 to 63 Hz, or 30 to 65 Hz.

Number of channels	4, PWM outputs
Output type	4–20 mA outputs, non-isolated
PWM frequency	1.5 kHz
Common Mode Voltage	15 Vdc ±10%
Current output	4–20 mA
Max current output	25 mA ±5%
Min. load resistance	0 Ω
Max load resistance	300 Ω at 22 mA
Resolution	15 bits of full scale
Accuracy @ 25 °C	Better than ±0.1% of full scale, 0.025 mA
Temperature Drift	140 ppm/°C, 0.23 mA maximum
	70 ppm/°C, typical (0.45% of full scale, 0.1125 mA)

Each analog output has identical circuitry. There is no isolation between outputs and no isolation to the digital circuitry of the GTC190A. Wiring for each is shown below but only the terminal numbers change for each output.

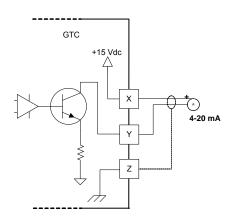


Figure 5-5. Analog Output Wiring Diagram

Analog Outputs (AO_01 thru AO_10)

The system includes ten analog outputs. These readout signals are 4–20 mA signals for driving meters or sending readouts to other plant system controls. Each of these signals is configurable in the application program.

- 1. Actual Speed Readout
- 2. Speed Reference Readout
- 3. Exhaust Gas Temperature Readout
- 4. Gas Fuel Valve Demand
- 5. Liquid Fuel Valve Demand
- 6. Generator MW Sensor Readout
- 7. Generator MegaVar Output Readout
- 8. Generator MegaVoltAmp Output Readout
- 9. Generator Power Factor Output Readout
- 10. Generator Current
- 11. Generator Voltage
- 12. Utility Bus MW Sensor Readout
- 13. Utility Bus MegaVar Output Readout
- 14. Utility Bus MegaVoltAmp Output Readout
- 15. Utility Bus Power Factor Output Readout
- 16. Utility Bus Current
- 17. Utility Bus Voltage
- 18. Synchroscope Output
- 19. Customer Configurable Analog Output (from Modbus AW_14)
- 20. Customer Configurable Analog Output (from Modbus AW_15)
- 21. Customer Configurable Analog Output (from Modbus AW_16)
- 22. Customer Configurable Analog Output (from Modbus AW_17)
- 23. Speed / Ratio Valve Demand Output
- 24. *0-100 (Access for LL to control this output)

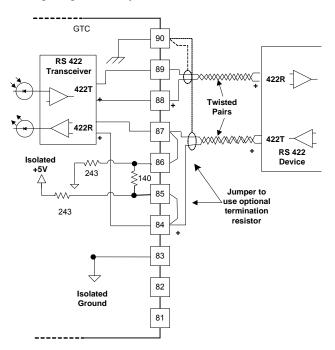
*Via the Watch Window service tool it is possible to select the output of the power monitoring elements to be displayed as a phase value, or total/average of the phases. The default is to output the total/average.

Communication Ports

There are two serial ports on the GTC190A. They may both be used simultaneously and may both be configured independently. Performance of any one port will depend on how many ports are in use and the port traffic. Ports 1 and 2 may be configured as RS-232, RS-422, or RS-485 to match the intended application. All ports are optically isolated from each other.

Any port configured as RS-232 will meet the RS-232C standard for communications. The wiring shall meet the requirements of EIA RS-232. This standard states a maximum cable length of 15 m (50 ft) with a total capacitance less than 2500 pF and a data rate not exceeding 56 kbps. All GTC190A serial ports may be configured for data rates up to 115 200 bps but may not function properly at this high data rate when a full 15 meters of cable length is used. Do not leave an RS-232 null modem cable attached to the GTC190A if it is removed from the PC, to avoid the possibility of EMC noise being introduced to the GTC190A.

Any port configured as RS-422 or RS-485 meets the ANSI standards for this type of communications. The wiring shall be one continuous cable between nodes and shall meet the requirements of EIA RS-422 or EIA RS-485 for 500 kbps. However, one half of the cable length limits is recommended due to harsh environments typical of prime mover installations as follows:


GTC190A Gas Turbine Control/Generator Applications

Cable

Standard shielded twisted pair cable 24 AWG, low-capacitance cable 22 AWG, low-capacitance cable 20 AWG, low-capacitance cable Fiber optic cable with optical repeaters

Length	Example
30 m (100 ft)	
75 m (250 ft)	Belden 9841
120 m (400 ft)	Belden 3105A
150 m (500 ft)	Belden 89207
> 150 m (500 ft)	

The last unit in the network chain, and only the last unit, should have its receiver terminated with a resistor. If the GTC190A is the last unit, installing jumpers as shown on the following diagrams may use the internal resistors

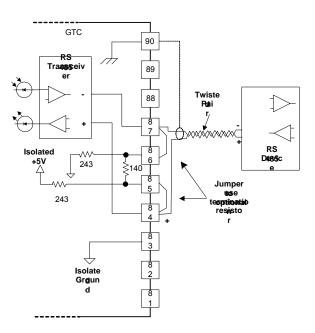


Figure 5-7. Serial 1 Wiring Diagrams, RS-485

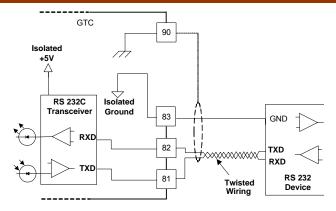


Figure 5-8. Serial 1 Wiring Diagrams, RS-232

Configurable Port (COM 1)

This port may be configured to use Modbus protocol and communicate as a Modbus Slave with any other plant device (typically an Operator Interface or a plant DCS system). A list of the Modbus data that is programmed in the GTC190A application can be found in Appendix B.

This port configuration is defaulted as an RS-485 port, with a baud rate of 38.4 kbps, no parity, 8 data bits, and 1 stop bit.

Configurable Port (COM 2)

The port may be configured for RS-232, RS-422, or RS-485 by using the correct wiring connections and selecting the correct protocol mode.

This port may be configured to use Modbus protocol and communicate as a Modbus Slave with any other plant device (typically an Operator Interface or a plant DCS system). A list of the Modbus data that is programmed in the GTC190A application can be found in Appendix B.

This port configuration is defaulted as an RS-232 port, with a baud rate of 38.4 kbps, no parity, 8 data bits, and 1 stop bit.

Software Interface Tools Setup

Apply Power to the GTC190A

At power-up, the GTC190A runs through its boot-up routine and performs a set of initial diagnostics to verify CPU, memory, I/O initialization, and bus health. This boot-up routine takes approximately a minute to execute. During this time, the control's green run and red status LEDs on the CPU and I/O modules should be on. When boot-up is complete, the application program code begins running, the control outputs will be enabled, and system control will begin—the control's red status LEDs will turn off and should remain off as long as the control is running.

Install Control Assistant Software

Both Woodward's AppManager and Control Assistant configuration and service tool may be downloaded at no cost from the Woodward website (**www.woodward.com/ic/software**). As an alternative, an Install version of these software tools are included on the System documentation CD that came with the control.

Connect PC to GTC190A

The connection of a computer is only required for calibration and setup of the GTC190A. The computer and service interface software program are not required or necessary for normal operation of the control. You will need to connect a standard Ethernet cable between the Ethernet port # 1 of the Atlas-II A5200 CPU module on the GTC190A and a user PC per the control wiring diagram (Appendix A - 9971-1271). For information on the cable or communication port settings, see the troubleshooting section of this manual.

AppManager (2.7 or higher)

Application Manager is a tool that allows users to do the following:

- 1. Change the IP address of the control
- 2. Transfer application or datalog files to or from the control
- 3. Start or Stop the GAP application that the control is running
- 4. Install Operating System Service Packs

<u>A</u> dminister <u>C</u> ontrol	<u>D</u> atalog	Options	Help							
Control Name	IP Addres	\$\$	^	Application Name	Size		Date	Status		R
V&V_SYS4_R	190.14.1	28.70		5418-2847.out	3557982	2007/06/18	10:01:52	Running	3	-
V&V_SYS5_L	190.14.1	28.52								đ
V&V_SYS5_R	190.14.1	28.53								1
V&V_SYS6_L	190.14.1	28.54								1
V&V_SYS6_R	190.14.1	28.55								ľ
V&V_SYS7_L	190.14.1	28.56								_
V&V_SYS7_R	190.14.1									
V&V_SYS8_L	190.14.1									1
V&V_SYS8_R	190.14.1									-
VXA00000551	190.14.9									
VXA00000579	190.14.1									-
VXA00004731	190.14.9									
VXA22492	190.14.9									ī.
VXA24219_GTC1										-
VXA26412	190.14.9		-							
VXA26780	190.14.4			J						-
VXA31174_GTC2				Fieldbus module(s) initi	alized - 2007/	/06/22 12:58:	12		~	
VXA_ETHSLV1	190.14.9			Initialization of Module	1 Succeeded	1 - 2007/06/22	12:58:13	}	_	
VXA_MIKES	190.14.1			Initialization of Module					-	
VXA_VIBE2	190.14.9			Initialization of Module			12:58:13	}		
VXM00002022	190.14.9			Application is running -						
VXM00002087	190.14.9			Application 5418-2847	out is set to A	AutoStart				
VXM_BUNK_R	190.14.1									
VXM_VIBE_L	190.14.1	28.192	v	<					>	

Figure 5-9. AppManager Tool

Initiating Ethernet Communications with the Control

Each GTC190A ships from Woodward with a default IP address of **172.16.100.20.** This means that the user must initially connect directly to the control with a PC that has had its IP changed to an address that is on this same first three octets within the subnet mask (for example 172.16.100.21). Once the connecting PC is configured like this, the user will see the control on the left side of the AppManager window.

Changing the IP address of the Control

It is usually desirable to change the fixed IP to an address available on the user's plant network, thus placing the control on the plant LAN. This is done via the AppManager program (available from www.woodward.com). The user can change the control IP to any available IP on the plants local network. The GTC190A can also be set up to receive an IP automatically from a DNS or DHCP.

IMPORTANT

This is done from AppManager via the "Change Network Settings" under the Control pull down menu in the menu bar.

Control Assistant (3.4 or higher)

Control Assistant is the primary service interface tool needed to configure the control, manage tunable values, trend values within the control, and view 'datalog' files (which are high speed data files that the control creates upon chosen events). The GTC190A is programmed to interface with this tool via an Ethernet connection from port 1 of the control to a user PC or serially via a null modem cable from the comm1 port to a user PC via the Woodward ServLink to OPC Server (SOS) communication utility. SOS is included in the Control Assistant installation and will launch automatically when needed.

WinPanel (Tool within Control Assistant)

WinPanel is a typical Windows application that provides a powerful and intuitive interface. The menu structures are familiar to Windows users. Variable navigation is provided through the Explorer window similar to the Explorer in Windows.

The WinPanel tool within Control Assistant permits you to talk to the GTC190A via the Ethernet port or comm. 1 port on the CPU. You can use WinPanel to monitor values, read fault messages, or issue instructions to the GTC190A System. The WinPanel tool runs on a laptop or desktop PC and utilizes standard Windows dialog boxes and Explorer windows to allow the user to create 'Inspector' files of any fields available in the application software. This tool will allow you to access the service or configuration screens through an automatically created 'inspector' file.

Manual 26432

Software setup for the GTC190A begins with the Software Configuration & Service Tunables Worksheet. When the worksheet is completed, the values are then entered into the GTC190A with the WinPanel tool. This tool can also be used to upload (from the control to a file on the user PC) the tunable settings from the control. This file then can be downloaded (from the user PC to the control) into another control of the same part number and revision number. Keep this tunable file archived, as it will simplify configuration of other spare units and aid technical support in commissioning troubleshooting.

An "inspector" provides a window for real-time monitoring and editing of all control Configuration and Service Menu parameters and values. Custom "inspectors" can easily be created and saved. Each window can display up to 28 lines of monitoring and tuning parameters without scrolling. The number with scrolling is unlimited. Two windows can be open simultaneously to display up to 56 parameters without scrolling. Tunable values can be adjusted at the inspector window.

Initial GTC190A Communications:

Before communications can begin between the WinPanel program and a control, a service interface definition file must be created. Once this network definition file is created and saved, it never has to be recreated, unless a new program is loaded into the control.

To create a service interface definition file:

- 1. Open the Control Assistant program and click on the WinPanel icon
- 2. The following prompt will open enter the password 1112 and select OK.

Enter Tune Password	
Password for tuning non Service-and C	Configure values:
	Change Password
OK Cancel	Help

Figure 5-10. Initial WinPanel screen

GTC190A Gas Turbine Control/Generator Applications

At this point the tool will prompt you for the type of OPC connection you desire.

OPC Connection	
OPC server type © Servlink <u>O</u> PC serv © Embedded <u>O</u> PC s	ver erver (on the control or NetSim)
Connection type Local Server <u>R</u> emote Server	Name or IP address of server node:
Connect	Cancel Help

Figure 5-11. OPC Connection screen

1. Select ServLink OPC server and Local Server and select Connect.

At this point the SOS utility will launch. Initially it will not know where to connect to the control, so from the dialog box below select Session / New

SOS Servlink OPC Server 3.1 beta 3	
File Session Options Help	
Running	
i taning	

Figure 5-12. Initial SOS screen

and the following dialog box will open.

🛣 Connect Servlink to control	
TCP (Ethernet) Primary TCP IP Address 190.14.98.117	Connect TCP
Serial Port COM3 Baud Rate Automatically detect baud rate	Connect Serial

Figure 5-13. Ethernet Link IP address

When using an Ethernet connection, enter the correct TCP IP address of your control and click on Connect TCP and the OPC Server program will establish control communications, begin reading all control setting registers, and create a lookup table for these registers to expedite future control communications. If using a serial connection select the proper port for the PC and select Connect Serial. Upon reading register location information from the control, the following Windows pop-up box will appear. (This step can take up to a minute to complete.)

File Session	Options <u>H</u> elp				
Port	Backup port	Controlld	ApplicationId	Status	Backup status
190.14.98.117		VXA00004731	5418-2847 2007-06-18 10.00.35	Loading Service Interface Definition from cache	

Figure 5-14. Reading Control Information

File <u>S</u> ession	Options Help				
Port	Backup port	Controlld	ApplicationId	Status	Backup status
190.14.98.117		VXA00004731	5418-2847 2007-06-18 10.00.35	Building Opc namespace	
Running					

Figure 5-15. Building Control Information

Once all control program registers have been read, the text "Dflt Control ID" will appear within the ServLink program window and the network definition file can be saved for future retrieval by the WinPanel program. If the network definition file is not saved it will have to be re-created before computer-to-control communications can be established again. Save this network definition file and minimize the ServLink program window.

😤 SOS Servi	link OPC Server	3.1 beta 3			
File Session	Options Help				
Port	Backup port	Controlld	ApplicationId	Status	Backup status
190.14.98.117		VXA00004731	5418-2847 2007-06-18 10.00.35	Connected	
Running					1

Figure 5-16. Connection to Control Established

Start WinPanel Software

At this point, the WinPanel software program will open its interface environment that looks like this:

Control Assistant							
ile Edit Yiew Control Sheet	Iransfer License Options Window Help						
🛎 📽 🖬 👗 🗞 🛍 🗇) 📾 🦢 🕙 💐 👯 📰 🕒 🖽 🔶 👀 🕼)		$ \varphi \leftrightarrow \Rightarrow \Rightarrow \downarrow e$	f			
🕫 WinPanel							
Sheet 1							
B SOSRUCCAL HOST È: VIA00004731	Control Category Block Name	Field Name	Value	UDLow	High	Initial	
idward Governor Company						Line	Number : 1

Figure 5-17. WinPanel Menu and Explorer

The WinPanel Menu bar, Explorer and Inspector will appear as shown above. Click on the \mathbf{Q} icon (Quick Inspector) on the tool bar. Multiple sheets will automatically be created from each Service and Configure Header programmed into the control. Optionally, other inspectors can be created to allow viewing of more than one sheet at a time.

Once communications with the control is established, WinPanel performs these primary functions:

Monitoring and Tuning of Control Variables—WinPanel presents variables in a tabular format. The user chooses the variables to view. Multiple pages of variables can be created, each with useful parameters for various troubleshooting or tuning procedures. The user can toggle between pages depending on the task being performed.

Control Configuration and Set Point Management—WinPanel can upload or download all tunable variables from the control system. This feature allows a user (e.g., fleet owner, distributor, packager) to upload (and save) all tunable parameters from one control and download the same settings to other controls for similar turbine configurations.

WinPanel allows for automatic generation of inspector sheets. Click on the Q icon (Quick Inspector) on the tool bar. A sheet will automatically be created from each Service and Configure Header programmed into the control. Multiple inspectors can be created to allow for viewing more than one sheet at a time.

To enter the I/O Lock mode and enable a configure value to be entered, click on the I/O Lock icon on the Tool Bar. Because the values set in Configure are critical to turbine operation, it is not safe to operate the prime mover while these parameters are being configured. In the Configure mode, the control outputs will be set to their off state and the microprocessor will stop executing the application code. The control will have to be reset to continue operation.

The Reset icon allows the microprocessor to store the configure parameters, to return the outputs to their active state, and to resume executing the application software.

When the tuning or setting of parameters is complete, the values must be saved in the control's non-volatile memory. Go to the Tool Bar and click the PROM icon for Save Values. The values will be saved in non-volatile memory and will be unaffected by loss of power to the control.

To save the configuration to a file in the external computer for backup or download later into another control, select the Save Application Settings icon. All the tunable values presently set in the control will be saved to a file and can be loaded into this control to reprogram it to the saved values or into another control at a later time.

↓ ■ If an application configuration has been previously saved to a *.TC file, the saved set of parameters can be loaded into the control as a group by selecting the Load Application Settings icon.

Configure Menu Descriptions

The GTC190A has multiple Configure and Service menus to simplify and protect control settings and their adjustments. All menus appear as pages (or sheets), are arranged alphabetically, and can be located by using the inspector's arrow buttons located above the pages to scroll to the desired menu.

The program's Configure menu items are protected when the control is in operation and cannot be changed. Before configuration values can be changed, the control must be in its I/O Lock mode. Service menus are not protected and can be modified at any time.

To enter the I/O Lock mode and enable configure changes, click on the I/O Lock icon on the Tool Bar. Because the values set in Configure are critical to turbine operation, it is not safe to operate the prime mover while these parameters are being configured. In the I/O Lock mode the control outputs will be set to their off state and the microprocessor will stop executing the application code.

Once the configuration changes have been completed, save the values to the control, exit the WWI program, and then Power Cycle the GTC control. This will allow the unit to re-initialize the configured parameters and resume executing the application software.

Chapter 6. Control Functionality Setup Procedures

Introduction

This chapter contains information on control configurations, setting adjustments, and the use of Woodward's Watch Window software tool. Because of the variety of installations, system and component tolerances, the GTC190A must be tuned and configured for each system to obtain safe operation and optimum performance.

An improperly calibrated control could cause an overspeed or other damage to the prime mover. To prevent possible serious injury from an overspeeding prime mover, read this entire procedure before starting the prime mover.

The worksheet in the Appendices of this manual should be used to select the values used in the tunable blocks of the GAPTM program for the GTC190A application. On the lines provided, enter the values used for your control. Once the worksheet is completed, connect the control with the WWI tool as described in the previous section. Click on the Q in the tool bar to execute a routine that will automatically generate an inspector file for all of the configuration and service fields (*you will want to resize the Block, Field, and Value columns in the inspector file to see the complete prompts that exist for each row*). Using the worksheet, tune each field to the value you require for your application. Use a separate worksheet for each control when more than one control is used at each site. Note that as a user gets more familiar with the system, you can modify/customize your own inspector files to best fit your needs.

This should be done at initial installation to establish the correct turbine package configuration details for correct operation of the fuel control. The turbine must be shutdown (in a non-running state) during control set-up to tune or adjust any of the parameters on the Configuration sheets. This is not required to adjust or tune any parameters in the Service sheets.

Start Modes

This control contains an option to use a standard start sequence for starting the gas turbine, which is the initial control mode for the fuel. These options are intended to provide a consistent acceleration of the turbine, from turbine 'lite-off' up to closed loop speed control. Once the fuel control has reached speed control, the start mode demand signal is ramped out of the way (to 100%). It is important to point out that the fuel control will not ramp the fuel valve open until the control recognizes that the turbine has achieved 'lite-off'. The default start option is to have the control raise the fuel demand via a start ramp at the user-defined rate until the unit reaches PT Speed control at the minimum PT reference value. This allows for the most aggressive ramp-up times of the turbine. For less aggressive ramp-ups, the start ramp rate can be reduced, or the EGT Temp controlled start ramp option can be enabled.

Once the Start / Run discrete input contact is closed (TRUE), the fuel control will initiate a start. If the GTC Start Sequence option is selected, then this input will initiate the start sequence and the fuel valve demand will rise at the appropriate time. This contact is NOT a latched input, meaning that it must be held TRUE to activate fuel (hold closed versus momentary). If this signal is lost or drops out, the fuel control enters a Normal Stop routine. If this option is not selected, then this discrete input will indicate to the control that a start has been issued, but will allow LL to handle the complete startup sequence.

To achieve successful turbine 'lite-off', the unit must first be set up for either a Mechanical Lite-off or an Electrical Lite-off.

IMPORTANT For information on setting correct Fuel Flow for lite-off, see the Troubleshooting section.

Mechanical Lite-off = Minimum Valve position mechanically set to yield correct lite-off fuel flow. If this is used configure the MIN_FUEL position to Zero (0.0).

Electrical Lite-off = Minimum Valve position is set in software (MIN_FUEL) to yield correct valve demand position to yield lite-off fuel flow. If this is used then mechanically the valve should have the min stop set to zero degrees.

Start Ramp Control Start (Default rate 0.3 % per sec)

The initial increase of fuel valve position is accomplished by a ramp up the Start Ramp from the initial MIN_FUEL position to a point at which a speed loop takes over control of the fuel valve demand. The ramp will increase at the default rate, which is configurable. The start ramp provides a user-defined increase in fuel valve demand and a corresponding acceleration of the turbine until another input of the LSS takes control. If the rate of increase of the ramp becomes too high, the Acceleration control or EGT Temp limiter control will take over control of fuel demand.

EGT Temp Ramp Control Start

After the initial increase of fuel valve position is accomplished by the start ramp, the EGT PID can be used to bring the unit up to a point at which a speed loop takes over control of the fuel valve demand. The temp ramp contains two user defined setpoints and a ramp rate (in °F/s). The temp ramp starts at the Lower temp setpoint until 'Lite-off' is detected. The ramp then ramps up to the High temp setpoint at the user defined rate. This option is useful if a unit is experiencing overtemps during start-ups or the user desires to avoid high temps at sub-idle conditions.

Auto Start/Stop Sequence

The GTC190A has a built in automatic start sequence that can be configured by the user. In addition to this auto sequence, the user has the option to use the GTC relay outputs for the Motor Starter, Ignitors, and Fuel Shutoff (Block) valves. To use these outputs they must be configured in the relay output section of the hardware.

Configuration Items:

1) Use Auto Start/Stop SEQ?	*True
2) Use Fuel SOV & Ignitor relay outputs?	*True

The state of these two configuration items (1 and 2) will determine how the GTC will respond to a Start/Run command.

- True/True = complete start sequence logic as shown below is followed
- **True/False** = start sequence begins at "Attempt Turbine Lite-off" step, assuming the fuel block valves and ignitors are activated, and then continues as shown
- **False/Either T or F** = control will follow the "Attempt Turbine Lite-off" and "Lite-off and Accelerate to PT Idle" steps, once turbine reaches PT Idle the start sequence is completed.

The GTC190A utilizes Sequential Function blocks that define steps within the sequence. The following steps are included in the GTC190A application:

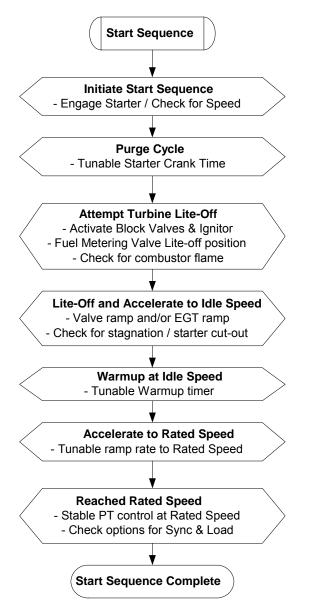


Figure 6-1. Auto Start/Stop Sequence

The following sections will explain the sequence logic above and identify items that are configurable by the user in each step.

Initiate Start Sequence

After receiving a start command the control will check all of the start permissives, which is a logical AND of the following:

- No Shutdowns present
- Unit not in Calibrate mode
- EGT temp is less than 400 deg F
- Fuel Shutoff Valves are Closed
- Fuel Metering Valve at minimum position
- Speed reference setpoint at minimum value
- Any of the customer Start Permissive inputs

If these are all TRUE then the control will energize the Motor Starter relay output and wait to detect that the speed probes are reading a speed above the minimum starter crank speed, if no speed is detected within the required time then an alarm is issued. Once speed is detected the Sequence moves into the Purge Cycle step.

Configuration Items:	
Minimum Crank Speed (rpm)	*500 (100, 2000)
Time to wait for Speed detection (sec)	*10 (1, 120)

Purge Cycle Sequence

The control will allow the turbine to crank on the starter motor for the amount of time that the user configures for the purge time. This allows for any required purge of the internal turbine air and any downstream boiler system, if no boiler is present then this time can be minimized. Once this timer is complete the control will move to the Attempt Lite-off step.

Configuration Items: Purge Cycle Time (sec)

*30 (2, 1200)

Attempt Lite-off / Activate Fuel Shutoff Valves & Ignitor

At this step the control will issue relay commands to open the fuel shutoff valves for the selected fuel type and turn on the ignitors. The control will wait for the configured time to see that a flame has been established in the combustor (via one of the selected options for flame detection). If the control does not get this indication then a shutdown command is issued and annunciated as a Failed to achieve Lite-off. Once Lite-off is achieved the sequence proceeds to the Lite-off and Accel step.

Configuration Items:

Time to wait for Lite-off on Gas Fuel (sec)	*10 (2, 30)
Time to wait for Lite-off on Liquid Fuel (sec)	*20 (2, 30)
*Note - be sure the time is correct for the chos	en fuel.

Lite-off and Accel to Idle Speed

At this step the control begins to ramp open the fuel start ramp and will continue on this control, or one of the other start mode options, up to the minimum idle speed setpoint. During this acceleration the speed will pass through the Starter cutout speed, which is when the Motor Starter relay will drop out. The control has a configurable timer during which it must reach the minimum idle speed setpoint (Idle). If it does not reach idle speed within this time frame a shutdown command is issued and annunciated as a Speed Failed to Accel. Once Idle speed is reached then the sequence proceeds to the Warm-up step.

Configuration Items:

Maximum Time to Accel to Idle speed (sec)	*120 (5, 600)
Motor Starter Cut-out Speed (rpm)	*1000 (100, 5000)
Idle Speed = Min Speed Reference	Set in System Config

Idle Warm-up Cycle Sequence

At this step the control will hold the unit at idle speed for the amount of time configured by the user. At the end of this cycle the unit will issue a pulse to begin ramping the speed reference to the rated setpoint. At this point the sequence proceeds to the Accelerate to Rated Speed step.

Configuration Items:

Time to Warm-up at Idle Speed (sec)	*30 (5, 600)
Raise Speed Ref at Fast Rate(F=Default Rate)	*True
Speed Reference Fast Rate (rpm/sec)	*100 (5, 1000)

Accelerate to Rated Speed Sequence

At this step the control will begin to raise the speed reference at the default or fast ramp rate, as determined by the user. If control at rated speed is not achieved in the configured time allowance then a Shutdown command is issued and annunciated as Speed Failed to Accel. It is important to set this timer to a calculated amount of time in which the speed should reach rated speed (using the programmed ramp rate and rpm range between Idle and Rated). Once the unit achieves control at Sync speed the sequence proceeds to the Reached Rated Speed step.

Configuration Items:	
Maximum Time to Accel to Rated (sec)	*60 (5, 600)

Reached Rated Speed Sequence

At this step the control looks to determine that the turbine is in speed control at rated speed. Once this is confirmed the Start Sequence is completed.

At this point the Start Sequence is completed.

Initiate a Normal Stop Sequence

The user can elect to initiate a normal stop sequence that will bring the unit down from any operating point at Rated Speed or above. The sequence is initiated by receiving a Normal stop command pulse. The control will ramp down the Speed reference to the minimum load point and then open the generator breaker. After gaining speed control at rated speed, the control will ramp down the speed reference from the rated setpoint to the minimum setpoint (Idle Speed). Once this is achieved the control will hold the unit at this speed until the configured cool down timer has expired. At this point the control will shutoff fuel (both the metering valve and the shutoff valves). When the EGT temperature falls below 400 degrees F then the unit is considered to be shutdown and the normal stop sequence is complete. There is not provision in this sequence to initiate any motoring of the starter, turning gear, or ratchet control logic. This must be done in LL.

Configuration Items:

Time to Cool down at Idle Speed (sec)	*30 (5, 600)
Minimum Load MW Setpoint (mw)	*5 (1, 100)

Event Annunciation (Alarms/Shutdowns)

When an event occurs, the application sets a numbered Alarm flag (listed as AL_xxx), which is latched as per the list in Appendix C. The action to be taken is determined by the configuration option that the user selects for each event. These alarms all have a user tunable value for the configuring the action of each event. The programmed default actions for these events are shown in the list below. The ACKNOWLEDGE input will turn off the Horn output. The RESET will clear the event latch, if the event condition no longer exists. The options are as follows:

Configuration Number	Description
1	Disabled (No action taken) – for not used events
2	Alarm (Audible & Visual annunciation of event)
3	Soft Shutdown (same as Alarm w/ Open Gen Breaker Command
4	Hard Shutdown (same as Soft w/ Fuel Shut-off)
5	Reserved (Ladder Logic defined sequence)

Alarm Sequence

When the fuel control detects an alarm condition, it activates a summary alarm and horn output that can be tied to relay outputs. The first 300 events are triggered by actions in the GTC190A GAP application – any events greater than 300 are triggered by the Ladder Logic application. The control sends a numeric value along with information about the specific cause of the alarm out through the Modbus block. Using the Woodward service tools the customer can also find the numeric alarm value that corresponds to the numbered alarms found in Appendix C of this manual. An acknowledge signal will clear the horn annunciation of the event. A reset will clear the alarm, if the condition that initiated it no longer exists. If it still exists the latch will remain set.

Soft Shutdown Sequence

When a soft shutdown occurs, either a fuel control initiated event or a discrete input contact configured for a soft shutdown, the unit will open the Generator Breaker to take all load off of the turbine. The GTC will send information as to the specific cause of the shutdown out through the Modbus block. The customer can also go into Service mode and view a numeric shutdown value that corresponds to the numbered shutdowns found in Appendix C of this manual. An acknowledge signal will clear the horn annunciation of the event. A reset will only clear the shutdown if the condition that initiated it no longer exists. The soft shutdown stack and sequence are overridden if a hard shutdown event occurs. This will make the annunciation of the trip clear to the user by the first out indication. If the GTC annunciates a first out indication for both a soft and a hard shutdown – that indicates that the first event was the soft shutdown event, immediately followed by the hard shutdown event indicated.

Hard Shutdown Sequence

When a hard shutdown occurs, either a fuel control initiated event or the discrete contact shutdown input, all of the actuator signals go to zero, the fuel shutoff valve outputs (if used) go False, and the Generator Breaker will be commanded Open which will cause the turbine to shutdown. The fuel control will activate a summary shutdown relay output and also send information as to the specific cause of the shutdown out through the Modbus block. The customer can also go into Service mode and view a numeric shutdown value that corresponds to the numbered shutdowns found in Appendix C of this manual. An acknowledge signal will clear the horn annunciation of the event. A reset will only clear the shutdown if the condition that initiated it no longer exists AND the PT speed has dropped below the user defined speed setpoint. This is done to insure that there is no attempt to re-light the turbine while it is in a shutdown mode.

When a hard shutdown occurs it will override the soft shutdown stack – so that those events will not come in as nuisance events, since the breaker will be opened as a result of the hard trip.

Setup of PT Speed Control

The GTC190A requires that the user setup reference parameters and dynamic gain values in order to control the PT (Power Turbine) Shaft speed of the turbine. The control will create a ramp function based on the upper and lower reference limits defined by the user. This ramp will move at one of 3 rates – Default, Fast and Instant. The user defines the first 2 of these rates in units of rpm/sec. There are 3 optional speed switches that are connected to relay outputs. These signals can be use to assist any sequencing or auxiliary logic that may be performed by another external device. The user can define the speed setpoints for each of these switches.

There are also a few other PT speed options available for the user.

- Option of implementing dual dynamics, such that one set of speed PID gain values are used in one operating mode (such as Isoch mode) and a second set of dynamics can be used while in a different operating condition (such as Droop mode)
- Ability to enable an PT Overspeed test which will allow the user to adjust the Overspeed Setpoint in the control while operating (THIS DOES NOT BIAS THE PHYSICAL SPEED IN ANY WAY)

 Option to automatically override the failed PT speed probe signals until the control determines that it should be receiving some valid speed signal

These parameters must be defined before the control is used to run the turbine. If the PID gain values are not known, then the control dynamics may be adjusted for desired performance, once the turbine is running, by following the procedure detailed in the Troubleshooting section below.

Configuration Items:

Service/Configuration Worksheet: PT SPEED CONTROL SETUP

Setup of the Accel Control–PID or Limiter Curve

The GTC190A requires that the user configure either a Speed derivative PID or a fuel limiter curve based on the compressor discharge pressure of the turbine. The purpose of this logic is to protect the turbine from overfueling (acceleration limiter) by limiting the maximum fuel valve position, especially during transient events.

The speed derivative PID uses a calculated derivative of the sensed speed as the process input and a setpoint as an rpm/sec limiting value. This setpoint can come from a curve output or a LL determined parameter.

The CDP/Fuel Schedule uses the CDP (as the X value) as scaled by the user. The output of the curves block (Y value) limits the LSS bus in scale of 0-100% (that is, if output is 50 for a given input, then fuel flow will not be able to increase above 50% valve demand). There are separate curves for gas and liquid fuel—if the turbine is a single fuel unit then the unused fuel curve should have all Y values set to 100%.

To calculate the correct X and Y values for this curve, one of the following methods should be used.

- Turbine OEMs typically define a curve of Compressor Discharge Pressure vs. Fuel (in BTU/hr) in the control or installation manuals for the turbine. The user should get the heating value of the fuel used at their installation site and translate this curve into a CDP vs. Fuel Flow curve. The user should then plot their fuel valve flow output (in PPH) versus demanded position (%) and create an appropriate CDP vs. Fuel Valve demand curve. Further information of the creation of this curve can be found in the Troubleshooting section.
- The user could record data from their unit while it is currently running and generate a CDP vs. Fuel Valve demand curve. This method should contain a full range of data points (sub-rated PT speed & under load conditions). The Appendices of this manual contain a sheet to assist in this effort.

Configuration Items:

Service/Configuration Worksheet: CDP TO FUEL LIMIT CURVE ACCEL CONTROL PID

Setup of the Decel Curve Setup

The GTC190A allows the user to configure a curve to protect the turbine from under fueling (flame out) conditions. The user will configure a minimum fuel limiter curve based on the compressor discharge pressure of the turbine. The Decel curve uses CDP (as the X value) as scaled by the user. The output of the curves block (Y value) limits the LSS bus in scale of 0-100% (that is, if the output is 10 for a given input, then fuel flow will not be able to decrease below 10% valve demand). There are separate curves for gas and liquid fuel—if the turbine is a single fuel unit then the unused fuel curve should have all Y values set to 100%. The curve is defined with a maximum of 5 breakpoints and should be tuned in sequence from X-Y values 1 through 5, with any unused points at the end tuned high (out of the way). If a constant minimum fuel percent limit is desired the Y values of the curve can be made equal, defining a flat line output.

Configuration Items:

Service/Configuration Worksheet: DECEL CURVE (CDP) SETUP

Setup of EGT Temperature Control

The GTC190A allows the user to setup an EGT control loop to limit the maximum EGT temperature of the exhaust gas output of the turbine. The user can adjust the EGT setpoint and dynamic gain values of the PID. This function is typically used as a turbine protection / topping limiter. This control loop also has an option to allow the user to include EGT limiting during the initial starting of the turbine. The user can enable this function and setup low temp and high temp setpoints that will define a ramp which will be used during initial start to limit the fuel valve position through this range. The user must also define a rate at which the control will ramp up the temp setpoint (from low to high), so that the turbine can continue to accelerate up to PT control. This function helps to eliminate potential overtemp shutdowns on initial startup by providing closed loop control at sub-PT Idle conditions. The EGT control automatically resumes to being a topping control once the turbine has reached PT speed control.

Configuration Items:

Service/Configuration Worksheet: EGT CONTROL SETUP

Setup of EGT Temp Derivative Control

The GTC190A allows the user to setup a control loop to limit the maximum rate of change of the EGT temperature. The user can adjust the EGT_DERIV setpoint and dynamic gain values of the PID. The setpoint can be a fixed value (in Degrees F per second) or can come from a curve that uses either CDP or speed as a forcing function. Use caution if both this and the EGT start limiter functions are both being actively used. The limiter requesting the least amount of fuel will control the fuel metering valve. If it is desired to use this PID on startup then it is best to disable the Start Temp Limiter.

Configuration Items:

Service/Configuration Worksheet:

EGT_DERIV CONTROL SETUP

Setup of Generator Settings

The GTC190A allows the user to setup a MW control loop to limit the maximum MW output of the turbine. The user can adjust the MW setpoint and dynamic gain values of the PID. This function is typically used as a turbine protection / topping limiter and can also be used to limit the overall MW or horsepower output of the turbine.

Configuration Items:

Service/Configuration Worksheet:

GENERATOR SETTINGS

Setup of Load Sharing

The GTC190A has the capability to communicate with other GTC products, as well as other Woodward power management products, to allow Load Sharing of multiple units on a local power bus. When the units (either gas turbines or diesel generator sets) are isolated from the Utility bus, the LON communication link will allow these devices to balance the output of all available units to supply the total load on the local bus. This mode is described as Isochronous Load Sharing.

NOTE: If it is desirable to include a unit (or units) that load share via an analog signal (such as a Woodward Real Power Sensor) then another device should be added. The Woodward Load Sharing Interface Module (LSIM – p/n 8239-082) will provide a gateway to convert the analog load share signal into a LON signal that can be tied into the above mentioned digital load sharing products.

Configuration Items:

Configuration Worksheet: SYSTEM Use Load Sharing Option Transfer Rate In/Out of LS (sec) Use LON Communication Link

*True *10 (0.1, 60) *True

Synchronizer

The GTC190A control uses digital signal processing techniques to derive both true RMS voltages and relative phase of the fundamental frequencies of the bus and generator voltage waveforms. Digital signal processing techniques offer significantly improved measurement accuracy in the presence of waveform distortions, particularly since the phase measurement does not depend on zero crossings of the waveforms.

Either phase matching or slip frequency synchronizing may be selected. **Phase matching** method controls the engine speed to give zero speed error and minimal phase error between the generator and bus; this provides rapid synchronizing for critical standby power applications. **Slip frequency** synchronizing guarantees a fixed speed difference between generator and bus. This insures the generator to be faster than the bus and initial power flow is out of the machine for larger generators. For both synchronizing methods, the GTC190A control uses actual slip frequency and breaker delay values to anticipate a minimum phase difference between bus and generator at actual breaker closure.

The synchronizer can sense a dead local bus and close the generator circuit breaker automatically when safe to do so. The network communication between GTC190A control assures that multiple generators cannot close simultaneously onto a dead bus.

There are four synchronizer modes of operation: Run, Check, Permissive, Off. The mode can be selected through Watch Window or Modbus. The last mode selected by any of these interface methods will be the mode of operation.

Off mode (1), the GTC performs no synchronization functions, The running sequence would stop with the engine at rated speed, and an external function would be required to close the breaker and continue the sequence.

Check (2) mode is used to confirm that the synchronizer works properly by allowing synchronizing to be performed but not closing the breaker. The Synchronizer status screen can be used to observe the Slip, Phase, and voltage indication, (Displays ++ when matched). In the Check mode these indication must match external metering and wiring before allowing the breaker to close.

Permissive (3) mode is used to replace a sync check relay function, the bias outputs are passive, but the breaker command will be given when speed, phase, and voltage parameters are within the window.

Run/Auto (4) mode is the normal mode with active synchronizing and breaker control.

Additional synchronizer features include: voltage matching, time delayed automatic multi-shot reclosing, and a synchronizer timeout alarm. Raise and lower inputs can be used to manually adjust speed for manual synchronizing. Voltage raise and lower inputs can be used to manually adjust voltage for manual voltage matching. Each of these features may be enabled or disabled during setup.

Configuration Items: Service/Configuration Worksheet: SYNC

SYNCHRONIZER

Load Control

The GTC190A has 3 different modes for controlling the turbine load. Isochronous, Droop and Isochronous Load Sharing

Droop Mode

When the generator circuit breaker is closed and the utility breaker is closed then the unit is in droop operation. The turbine load will be directly proportional to the speed reference signal, which can be manipulated by Raise/Lower commands, a Remote speed reference signal (analog input) or a Modbus or ServLink DDE communication interface. The load reference can also be driven indirectly through the Process control mode. When the breaker tie to the utility is initially closed the unit will step up to a minimum load setpoint to insure that the breaker does not open due to reverse power. From this minimum load point the user can load the unit as desired or have the control automatically ramp the unit to a base load setpoint.

The typical application of simple load droop operation is with a unit that normally operates in parallel with a Mains (utility) bus.

Isochronous Mode

When the generator circuit breaker is closed, the utility breaker is open and the Load Sharing mode is not enabled, then the unit is in Isochronous mode and will handle all plant loads up to the upper load output limit of the turbine.

Manual 26432

The typical application of this mode is when a single unit is a stand-alone power generation site that does not tie to the utility or a unit that droops against the utility but needs to maintain all of the plant load when the utility breaker is opened.

Isochronous Load Sharing Mode

When the generator circuit breaker is closed, the utility breaker is open and the Load Sharing mode is Enabled, the unit will Load Share with other units connected to the bus. The load sharing signal will control the load of each engine by slight changes to the speed control's speed reference.

The typical application of this mode is when a unit is part of a group of standalone power generation units at a site that does not tie (or is not currently tied to) the utility.

Configuration Items:

Service/Configuration Worksheet:

Service/Configuration Worksheet:

SYSTEM SETUP Initial Mode @ Breaker Closure REAL LOAD CONTROL

Process Control

Process Control is a cascade control mode that manipulates the PT reference to maintain the process operation setpoint. Flexible controller adjustments, an adjustable deadband, and direct or indirect control action, allow the process control to be used in a wide variety of applications. The typical implementations of this feature include, import/export control, pressure maintenance, or other plant dependent load setpoint parameters. In the GTC190A it is only available when in Droop mode running in parallel with a utility grid.

A 4–20 mA process transmitter provides the process signal to the GTC190A control. The control includes an internal digital process reference value which may be controlled by raise and lower switch contact, or by a Modbus or ServLink communication interface. The output of the process control provides the cascade load reference to the Load control.

Adjustable ramps allow smooth entry to or exit from the process control mode. When the process control mode is selected, an adjustable ramp moves the load reference in a direction to reduce the process control error. When the error is minimized, or the reference first reaches either the specified high or low load pick-up limits, the process controller is activated.

Additional functions include selectable and adjustable process high and low limit switches and alarm activation.

Configuration Items:

Service/Configuration Worksheet:

PROCESS CONTROL

VAR/PF Control

The VAR/PF functions control the reactive power component of the generator in parallel systems. The reactive load mode can be configured for VAR or Power Factor control. The controller compares the reactive load on the generator with an adjustable internal reference and makes corrections to the setpoint of the Automatic Voltage Regulator (AVR) until the desired reactive power is obtained. The reactive power level can be maintained while also controlling real load through the generator breaker. The analog voltage bias output can be directly connected to compatible voltage regulators. The control also has raise and lower contact outputs to activate a voltage regulator MOP when an analog input is not provided on the AVR. The GTC190A control has a selectable voltage range alarm that is activated if the analog output to the voltage regulator reaches high or low saturation. The GTC190A control also has selectable and adjustable high and low voltage limit switches and alarm outputs.

The GTC190A control provides switch inputs to allow raising or lowering the generator voltage reference. The control also provides a 4–20 mA analog input for kVAR/PF setpoint control, if desired. The kVAR/PF reference can also be set through a Modbus or ServLink DDE communication interface.

While the GTC190A is controlling unit load to accomplish real load (kW) sharing, the voltage of the generators in parallel will be controlled to accomplish equal Power Factor levels of each generator.

Configuration Items:

Service/Configuration Worksheet:

REACTIVE LOAD CONTROL

Power and Energy Metering

The digital signal processing techniques are used to provide significantly improved accuracy and speed of response over conventional analog measurement techniques. Accuracy is improved using rapid sampling of the voltage and current signal waveforms and developing a true RMS measurement. Measuring true RMS power allows optimal accuracy, even in the presence of power line distortions.

The PowerSense board receives the PT and CT inputs for both the generator and bus for calculation of parameters for the GTC to use in system control. The algorithms used are based on IEEE 1459-2000. For the generator and bus the following parameters are provided: Hz, Vac, Amps, W, VA, VAR, PF, Phase, Voltage harmonics, Current harmonics, Negative Phase Sequence Voltage, Negative Phase Sequence Current.

Available for selection at the 4–20 mA analog outputs: Synchroscope, Generator metering, Mains metering

Protective Relaying

Alarms can be configured for generator and bus protective relay (i.e. Reverse power, Under Voltage) functions. Time delay, and separate warning and trip thresholds can be set. A complete list of protective relay functions available is given in the next chapter. Current based protections are implemented using the ANSI/IEEE C37.112 Very Inverse curve. Configuration Items:

Service/Configuration Worksheet:

ALM/SD EVENTS

Tunable Upload/Download Function

The TUNABLE UPLOAD & DOWNLOAD functionality is used for downloading or uploading tunables into or out of the control. The tunables may be downloaded from the control to a PC anytime, however the turbine must be shutdown while using the TUNABLE UPLOAD FUNCTION mode.

Entering into I/O Lock mode while the turbine is running will cause an automatic shutdown of the turbine with resulting process stoppage. Do not enter the I/O Lock to upload tunables into the control while the turbine is running.

From WW, go to the Explorer Window and 'right-mouse' click on the control (top level). A pull-down menu will appear and the App Settings selection will allow you to Save to File or Load from File.

- SAVE = Download the tunables in the control to a file on the user PC
- LOAD = Upload tunable settings from a user PC into the control

Loading tunables into the control will cause the unit to Lock the I/O and shutdown the turbine.

NOTICE

It is highly recommended that the user keep a current tunable list file available at site. This will make the configuration and setup of a spare unit very simple and assist in troubleshooting system problems.

Chapter 7. Generator Protection Functions

Protective Relay Descriptions

The table below gives some summary information about each type of protective relay function provided. Details for each follow the table. Note that the Alarm and Pre-Alarm Time Delays are used for both high and low conditions.

Name	Functionality	Туре
Generator Under/Over Voltage (27,59)	Alarm and Pre-Alarm capability	Definite Time
Generator Over/Under Frequency (810, 81U)	Alarm and Pre-Alarm capability	Definite Time
Generator Over/Under Power	Alarm and Pre-Alarm capability	Definite Time
Generator Directional Power Relay (32)	Alarm and Pre-Alarm capability	Inverse Time
Generator Negative Phase Sequence Over Voltage (47)	Alarm and Pre-Alarm capability	Definite Time
Generator Negative Phase Sequence Over Current (46)	Alarm and Pre-Alarm capability	Definite Time
Generator Phase Over Current (51)	Alarm and Pre-Alarm capability	Inverse Time
Generator Directional VAR Relay	Alarm and Pre-Alarm capability	Definite Time
Generator Phase Current Differential Imbalance relay (87)	Alarm and Pre-Alarm capability	Inverse Time
Sync Check (25)	True / False (no alarm)	Definite Time
Voltage (VAR/PF) Adjust Limits Reached	High and Low Alarms	Definite Time
Speed / Frequency Mismatch	Alarm only	Definite Time

Over and Under Voltage

The Over and Under Voltage protective relay is definite time. It operates by comparing the actual voltage to the level set points for this relay. The highest voltage of the 3 phase inputs is always used for the Over Voltage protective relay. Likewise, the lowest voltage of the 3 phase inputs is always used for the Under Voltage protective relay. Once an alarm is issued, it is latched until the GTC is reset. The generator Under Voltage relay is automatically disabled anytime the generator breaker is open. The Bus Under Voltage relay, Generator and Bus Over Voltage relays are not inhibited by breaker position.

The action to be taken for an Over Voltage Pre-Alarm, Over Voltage Alarm, Under Voltage Pre-Alarm, and Under Voltage Alarm are all independently configurable. There are separate Delay times for Pre-Alarm and Alarm. The delay times for Over Voltage and Under Voltage are identical but Generator and Bus are independently configured.

The Alarm and Pre-Alarm trigger levels for an Over Voltage Pre-Alarm, Over Voltage Alarm, Under Voltage Pre-Alarm, and Under Voltage Alarm are all independently configurable. The worst case phase voltage must exceed the configured level continuously for the delay time before the Alarm or Pre-Alarm action is taken.

Manual 26432

The diagram below shows how the Pre-Alarm and final Alarm events are envisioned to operate. Note that the delay times are identical between Over and Under Voltage event examples but the trigger levels are all separately configurable.

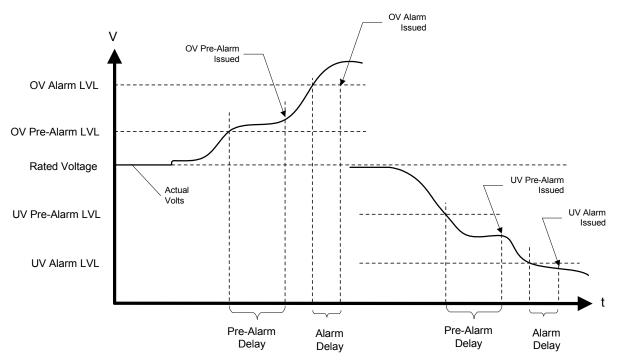


Figure 7-1. Over Voltage/Under Voltage Alarm

Over and Under Frequency

The Over and Under Frequency protective relay is definite time. It operates by comparing the actual frequency to the level set points for this relay. Once an alarm is issued, it is latched until the GTC is reset. The generator Under Frequency relay is automatically disabled anytime the generator breaker is open. The Bus Under Frequency relay, Generator and Bus Over Frequency relays are not inhibited by breaker position.

The action to be taken for an Over Frequency Pre-Alarm, Over Frequency Alarm, Under Frequency Pre-Alarm, and Under Frequency Alarm are all independently configurable. There are separate Delay times for Pre-Alarm and final Alarm. The delay times for Over Frequency and Under Frequency are identical but Generator and Bus are independently configured.

The Alarm and Pre-Alarm trigger levels for an Over Frequency Pre-Alarm, Over Frequency Alarm, Under Frequency Pre-Alarm, and Under Frequency Alarm are all independently configurable. The frequency must exceed the level continuously for the delay time before the Alarm or Pre-Alarm action is taken.

The diagram in Over and Under Voltage above shows how the Pre-Alarm and final Alarm events are envisioned to operate. The Over and Under Frequency protective relay function operates in the same manner as the Over and Under Voltage protective relay function.

Directional Power

The Over and Reverse Power protective relays are inverse time. They operate by comparing the actual real power to the level set point for this relay. Only real power is of interest for this protection. Over power for the generator is power flowing out of the generator (produced by the generator). Over power for the Bus is defined as power flowing into the Bus (same relationship as generator). Over power for the Bus is denoted as Export Power and Reverse Power for the Bus is denoted as Import Power.

A configurable time delay setting is provided to shift the inverse time curve along the time axis. This movement allows adjustment of the minimum trip time at the configured level. The same shifted curve is used for Pre-Alarms and Alarms so a time shift done for one will affect the other as well. The same shift is also applied to both the Over Power and the Reverse Power protective relays.

The power level must exceed the level continuously for the calculated delay time before the Alarm or Pre-Alarm action is taken. The delay time is recalculated each time the power level changes. Once an alarm is issued, it is latched until the GTC is reset. The Directional Power relays are continuously enabled.

The below graph shows how the Pre-Alarm (warning) and final Alarm settings relate to actual and rated power levels. Notice the delay time for the over power pre alarm is longer than the delay time for the over power alarm. This time difference results from the difference in the actual power compared to the prealarm and alarm set points. A long time delay is seen when the actual power is only slightly higher than the pre-alarm level. When the actual power goes above the alarm level it goes noticeably higher so the time delay is shorter. In order to determine the calculated delay and to see how the curve shift is used, refer to the second graph below.

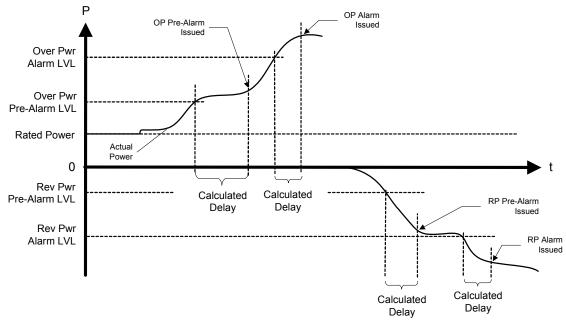


Figure 7-2. Over Power/Reverse Power

The graph below shows how the inverse time curve is applied to the directional power protective relay. Note the same curve shift applies to both Over and Reverse Power. Likewise, for the Bus, the same curve shift would apply to both Import and Export Power but is different than the curve shift used for the generator directional power protective relay.

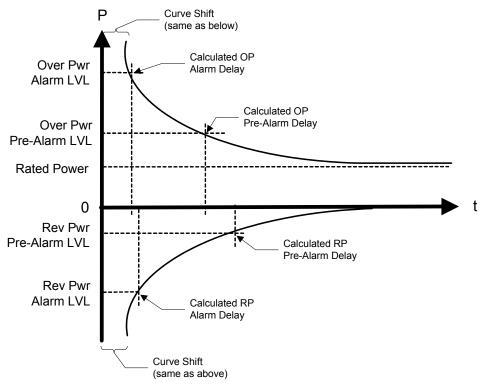


Figure 7-3. Over Power/Reverse Power Time Delay

Negative Phase Sequence Over Voltage

Negative Phase Sequence Voltage (NPS) is a measure of the imbalance in a three phase system. Any imbalance due to unequal voltage amplitude of the three phases or a phase angle error between phases creates NPS voltage. A completely balanced system with positive phase sequence generates 0% NPS voltage. Complete loss of one phase results in 50% NPS voltage, a 100% NPS voltage would result from a balanced system with reversed phase sequence. The NPS protection function must know the correct (expected) phase rotation in order to function properly.

Typical causes of voltage unbalance are large unbalanced loads (single phase loads in the system) and unbalances in the supply due to transformer designs or other customer loads in the power system. The most common effect of voltage unbalance (detected by NPS voltage) is rotor overheating on 3-phase motors.

For installations where significant regenerated EMF may occur (lifts, cranes, or similar), a sensitivity of 5%-7% is recommended above what is necessary for the system unbalance. To avoid tripping on system transient disturbances, this relay should be configured with a timeout from 2 to 4 seconds.

GTC190A Gas Turbine Control/Generator Applications

This Negative Phase Sequence Over Voltage protective relay is a definite time relay. As the name implies, it tracks levels ABOVE a configured setting. It operates by comparing the actual Negative Phase Sequence Voltage with the level set point for this relay. Once an alarm is issued, it is latched until the GTC is reset. The Negative Phase Sequence Over Voltage relays are continuously enabled.

The actions to be taken for a Negative Phase Sequence Over Voltage Pre-Alarm or a Negative Phase Sequence Over Voltage Alarm are both independently configurable. The Negative Phase Sequence Over Voltage trigger levels are also independently configurable for the Pre-Alarm and Alarm. There are separate Delay times for Pre-Alarm and Alarm. The Negative Phase Sequence Voltage must exceed the trigger level continuously for the delay time before the Alarm or Pre-Alarm action is taken.

The diagram in Over and Under Voltage above shows how the Pre-Alarm and final Alarm events are envisioned to operate. Only the Over Voltage portion of the diagram is used. The Negative Phase Sequence Over Voltage protective relay function operates in the same manner as the Over Voltage protective relay function.

Negative Phase Sequence Over Current

This Negative Phase Sequence Over Current protective relay is a definite time relay. The negative phase sequence over current is derived the same as the voltage above. Once an alarm is issued, it is latched until the GTC is reset. The Negative Phase Sequence Over Current relays are continuously enabled.

The actions to be taken for a Negative Phase Sequence Over Current Pre-Alarm or a Negative Phase Sequence Over Current Alarm are both independently configurable. The Negative Phase Sequence Over Current trigger levels are also independently configurable for the Pre-Alarm and Alarm. There are separate Delay times for Pre-Alarm and Alarm. The Negative Phase Sequence Current must exceed the trigger level continuously for the delay time before the Alarm or Pre-Alarm action is taken.

The diagram in Over and Under Voltage above shows how the Pre-Alarm and Alarm events are envisioned to operate. Only the Over Voltage portion of the diagram is used. The Negative Phase Sequence Over Current protective relay function operates in the same manner as the Over Voltage protective relay function.

Phase Over Current

The Phase Over Current protective relay is an inverse time relay. It operates by comparing the actual phase current to the level set point for this relay. The highest current of the 3 phase inputs is always used for the Phase Over Current protective relay. Total current is not evaluated. This protective relay is NOT meant to replace a breaker.

A configurable time delay setting is provided to shift the inverse time curve along the time axis. This movement allows adjustment of the minimum trip time at the configured level. The same shifted curve is used for Pre-Alarms and Alarms so a time shift done for one will affect the other as well. The worst case current level must exceed the configured level continuously for the calculated delay time before the Alarm or Pre-Alarm action is taken. The delay time is always being recalculated for the present current level input. Once an alarm is issued, it is latched until the GTC is reset. The Phase Over Current protective relay is continuously enabled.

The diagram in Directional Power above shows how the Pre-Alarm and final Alarm events are envisioned to operate as well as the interaction with the inverse time curve. Only the Over Power portion of the diagram is used. The Phase Over Current protective relay function operates in the same manner as the Over Power protective relay function.

Directional VAR

The Over and Reverse VAR (Import and Export VAR) protective relay is definite time. It operates by comparing the actual reactive power to the level set points for this relay. Only reactive power is of interest for this protection. Over VAR for the generator is reactive power flowing out of the generator (produced by the generator) and is representative of lagging power factor. Over VAR for the Bus is defined as reactive power flowing into the Bus. We will refer to this as Export VAR for the Bus. Reverse VAR for the Bus will be referred to as Import VAR. Once an alarm is issued, it is latched until the GTC is reset.

The action to be taken for an Over (Export) VAR Pre-Alarm, Over (Export) VAR Alarm, Reverse (Import) VAR Pre-Alarm, and Reverse (Import) VAR Alarm are all independently configurable. There are separate Delay times for Pre-Alarm and Alarm. The delay times for Forward and Reverse VAR are identical but Generator and Bus are independently configured.

The Alarm and Pre-Alarm trigger levels for an Over (Export) VAR Pre-Alarm, Over (Export) VAR Alarm, Reverse (Import) VAR Pre-Alarm, and Reverse (Import) VAR Alarm are all independently configurable. The reactive power level must exceed the trigger level continuously for the delay time before the Alarm or Pre-Alarm action is taken.

The diagram in Over and Under Voltage above shows how the Pre-Alarm and Alarm events are envisioned to operate. The Directional VAR protective relay function operates in the same manner as the Over and Under Voltage protective relay function.

Phase Current Imbalance

The Phase-balance Current protective relay is an inverse time relay. It operates by comparing the actual current between each phase to the level set point for this relay. The highest differential current of the 3 comparisons is always used for the Phase Current Imbalance protective relay.

A configurable time delay setting is provided to shift the inverse time curve along the time axis. This movement allows adjustment of the minimum trip time at the configured level. The same shifted curve is used for Pre-Alarms and Alarms so a time shift done for one will affect the other as well.

The worst case current differential must exceed the trigger level continuously for the calculated delay time before the Alarm or Pre-Alarm action is taken. The delay time is always being recalculated for the present current imbalance level input. Once an alarm is issued, it is latched until the GTC is reset. The Phase Current Differential protective relay is continuously enabled.

GTC190A Gas Turbine Control/Generator Applications

The below graph shows how the Pre-Alarm and Alarm settings relate to actual current imbalance levels. The current imbalance levels are internally normalized against the rated current. This provides the inverse time function with a valid comparison because the IEEE definition is only valid above 1 per unit. Nevertheless, the configuration values for the Alarm and Pre-Alarm Level are to be entered as the actual allowed difference. The GTC will automatically add Rated Current to the configured value.

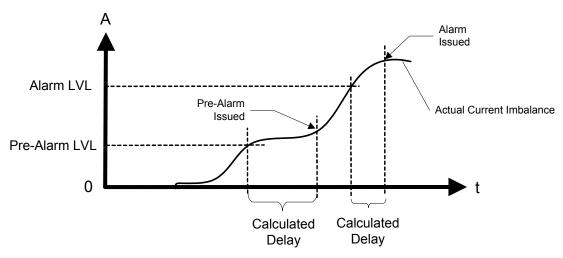


Figure 7-4. Phase Current Imbalance

In order to determine the calculated delay and to see how the curve shift is used, refer to the graph below. The Phase Current Imbalance protective relay function operates in nearly the same manner as the Over Power protective relay function except that rated current is automatically added into the percentage calculation for the IEEE inverse time curve input. The information is provided in case an exact trip time must be calculated.

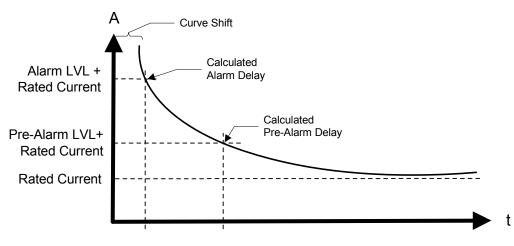


Figure 7-5. Phase-Balance Current, Inverse Time Delay

Sync Check

The GTC synchronizer provides the Sync Check protective relay function. It is listed here due to its nature as a protective relay. It is enabled during synchronizing only. The synchronizer always performs a Sync Check function regardless of the configured mode since it will never assert the breaker close output unless the two A-phase inputs are in sync with each other. The synchronizer may also be placed in the Permissive Mode which mimics a typical ANSI 25 device by closing the output when the two sources are in sync.

Voltage (VAR/PF) Bias Limit Reached

The Limits Reached alarm function applies to the two closed loop analog outputs – one for voltage adjust and the other for speed adjust. Each output has separate alarm due to exceeding the limits in the high direction or low direction. There is a fixed timeout of 10 seconds to ensure that a short bump into the limit does not cause an alarm. The alarm action is configurable.

This protection determines if the analog output or digital outputs (depending on configuration) have reached their limits. Since a digital output has no definite limit, the protection also reacts to the situation where the control is requesting more adjustment but the system is not responding. This condition would be indicative of reaching a limit.

Speed / Frequency Mismatch

The Speed/Frequency Mismatch protection watches the magnetic pickup speed input and the measured frequency on the generator input. It compares the scaled value of the MPU (the rpm value) to the frequency using a simple formula. The formula also depends on the configured number of generator poles.

$$Frequency = \frac{\#GenPoles \bullet RPM}{120}$$

The purpose of this protection is partly to identify an incorrect configuration for the number of teeth but primarily to diagnose a failed MPU signal or a generator failure. If the one of the signals fail, a mismatch will occur between the measured MPU speed and the measured generator frequency. Since overspeed is determined from the MPU input, this protection is an important adder to the overspeed protection.

A fixed delay of 5 seconds is incorporated. A one hertz margin is allowed. How the alarm reacts is configurable.

Inverse Time Curve

All protective relays that utilize inverse time trips will use the same curve shape as defined below. Each relay will be allowed to independently adjust the curve along the time axis. This adjustment does not alter the curve shape. The reason for the adjustment is to allow fine tuning of the alarm levels and timing.

The GTC takes the ratio of the input being used (phase current, power, etc.) to the rated value of that unit. The inverse time curve always uses a ratio of rated for its data element.

The inverse time curve plotted below is defined in IEEE C37.112 as the Very Inverse formula

$$Time = \left(\frac{A}{x^p - 1} + B\right) * D$$

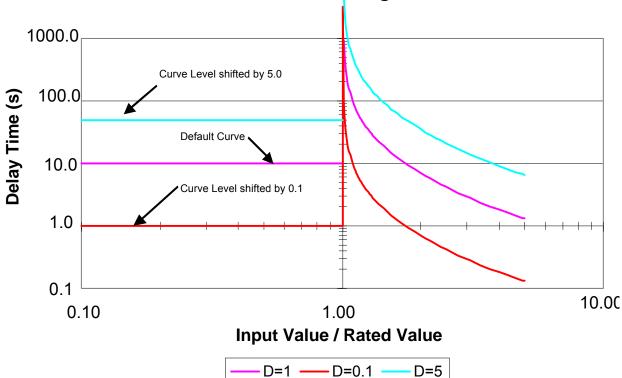
where:

Time	The amount of time to wait before an alarm is issued for the given value of x. As x increases, the time will decrease.
Х	A ratio of the measured parameter in protection to rated value.
Α	IEEE defined constant that affects the curve shape. It is fixed at 19.61 .
В	IEEE defined constant that affects the curve position. It is fixed at 0.491
Р	IEEE defined constant that defines the curve type. It is fixed at 2.
D	Adjustable time delay. This allows the curve to be shifted along the time axis by a variable amount., 0.01 to 10.0, default =1.0

For high alarms: If the input is less than the Alarm level and Pre-Alarm level, no action will be taken. When the input is above the Pre-Alarm level, the configured action will be taken for the pre-alarm after the timeout defined by the formula. When the input is above the Alarm level, the appropriate (and typically more severe) action will be taken after the (shorter) timeout defined by the formula.

For low alarms: If the input is greater than the Alarm level and Pre-Alarm level, no action will be taken. When the input is less than the Pre-Alarm level, the configured action will be taken for the pre-alarm after the timeout defined by the formula. When the input is less than the Alarm level, the appropriate (and typically more severe) action will be taken after the (shorter) timeout defined by the formula.

The IEEE curve implemented is the Very Inverse curve defined in IEEE C37.112 and also matches the IEC curve defined in IEC 255-03 except for the additional time shift (B) that is not defined in IEC. The formula will not function at rated or below rated for the parameter in protection. Therefore, if a trip value is set at or below rated, the timeout for these conditions will be fixed at 10 seconds. This causes a discontinuity in the curve at 100% rated. The values for A and B in the IEEE formula change at the discontinuity point. The constant A becomes 0 and the constant B becomes 10. Due to the location of the B constant and the D variable, the 10 second timeout will also adjust with the curve shift.


The figure below is a set of curves showing the IEEE Very Inverse formula plotted three times. The center plot is the default curve with no level shift, Shift value = 1.0. The upper plot is the same curve with a level shift of five. The lower plot is the same curve with a level shift of 0.1. Note the curve shape does not change. Also note the fixed timing at or below rated as shown by the straight horizontal line; and note how the fixed timing is varied with the curve shift. The GTC curve does extend to the right beyond the time shown.

Also shown below is a figure with the Inverse Time Curve converted to linear axis scale. The values used in the GTC extend above 25 second delay between 1.0 and 1.35, and also extend to the right beyond the ratio of 5.0.

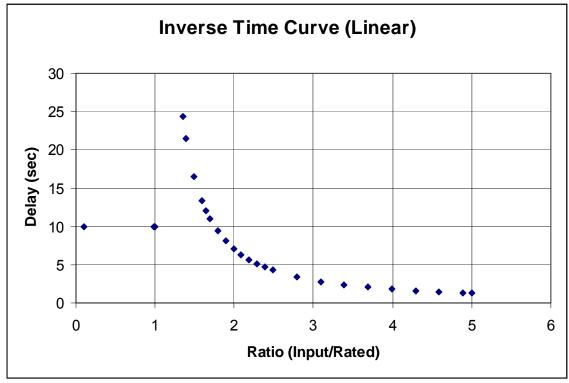
- **Example:** If the alarm set point is 150% of the rated (1.5 ratio) and the input is at this setpoint value and the shift = 1.0, the delay will be 16 seconds. When shift = 5, delay will be 80 seconds. When shift = 0.1, delay will be 1.6 seconds. As the input value exceeds the setpoint, the delay will become shorter.
- **Example:** For an Over Current Trip Relay function: If Rated Phase Current is 500 Amps, and a trip delay of 5.0 second is desired at 700 Amp.
- Ratio = 1.4, from formula (or reading from curve below) the Normalized Delay = 20.9 sec.

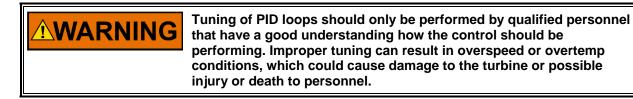
5.0 / 21.0 = 0.24

The curve shift value of 0.24 is required to meet the desired level and delay requirement.

Inverse Time Log Plot

Figure 7-6. Inverse Curve Time Delay, Level Shift




Figure 7-7. Inverse Curve Time Delay, Linear Graph

Chapter 8. Troubleshooting

Dynamic Response Problems

PID Controller Tuning

The majority of problems associated with the control of the turbine can be attributed to poor tuning of the PID control loops. These problems include overspeeding, overtemping, and flaming out as well as many others. For example, if the turbine control is hunting, the loop that is currently controlling the fuel valve is most likely incorrectly tuned and could cause sufficient overshoot to overspeed or overtemp the turbine. Some general tuning guidelines are outlined below.

The quality of regulation obtained from an automatic control system depends upon the adjustments that are made to the various controller modes. Best results are obtained when the adjustment (tuning) is done systematically. Prior training and experience in controller tuning are desirable for effective application of this procedure.

This procedure will lead to controller settings, which, after a load change, will provide:

- Process control without sustained cycling
- Process recovery in a minimum time

Controller settings derived for given operating conditions are valid over a narrow range of load change. The settings made for one operating set of conditions may result in excessive cycling or highly damped response at some other operating condition. This procedure should be applied under the most difficult operating conditions to assure conservative settings over the normal operating range.

There are several methods of controller tuning in use. The following procedure presents one, which will be easy to use, and at the same time minimize process upset. This method is one of systematic trial and error.

The method given is based upon the 1/4-ratio decay cycle. The peak of each cycle is 1/4 of the preceding one. The objective is to produce a trace as shown in Figure 8-1.

It is good practice to keep the average of the set point changes near the normal set point of the process to avoid excessive departure from normal operating level.

After each set point change, allow sufficient time to observe the effect of the last adjustment. It is wise to wait until approximately 90% of the change has been completed.

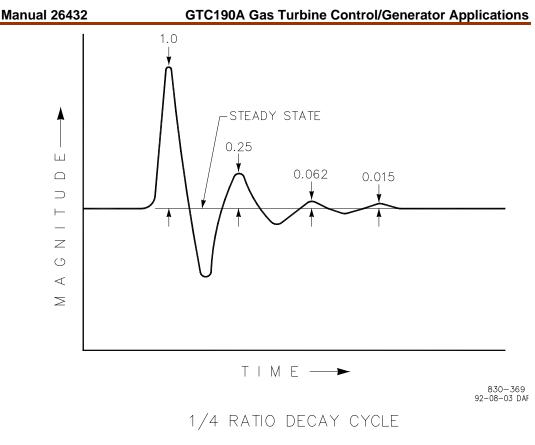


Figure 8-1. Ratio Decay Cycle

Controller Field Tuning Procedure

- 1. Have the process steady state on manual control at the normal set point. It is important that, for the duration of the controller tuning operation, no load changes take place. The occurrence of a load change may cause a misinterpretation of the recorder trace. Turn the integral adjustment to the position of low reset response, that is, place the reset adjustment at 0.02 repeats per minute (or 50 minutes per repeat). Adjust the Proportional Gain to a fairly low setting. (The actual value of the Proportional Gain will depend on the type of process variable being controlled.) Leave it this way until you are sure that the process has reached steady state.
- 2. Turn the Integral adjustment to minimum Reset effect; this will reduce or eliminate the Integral function. Check to see that Derivative adjustment is set for minimum Derivative, or in Woodward controllers at an SDR of 100.
- 3. Switch to automatic control. Make a small change* in the set point and observe the response of the process to the Proportional Gain setting. If little or no cycling takes place, increase the Proportional Gain to 150% of its previous value and make another small change to the set point. After each set point change, increase the Proportional Gain to twice its previous value until an "Optimum Proportional" response curve (see below) is obtained. If a change in Proportional produces a "Proportional Too High" curve (see below), lower the Proportional Gain to its previous setting. The "Proportional Too Low" curve illustrates the condition in which the proportional is too low.

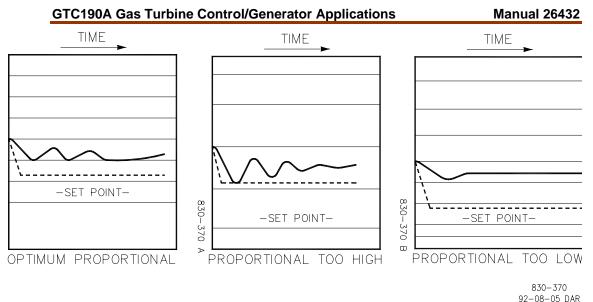


Figure 8-2. Proportional Gain Settings

*Set point changes can be made either up or down scale. The second change should return the set point to its original setting. Repeat this pattern through the tuning procedure.

4. With the Proportional Gain at the setting previously obtained in step 3, make a change in set point and observe the recovery cycle. If there is no excessive cycling, increase the Integral to 0.04 repeats per minute (or 25 minutes per repeat). Make another set point change and observe results. After each set point change, make a change in the Integral adjustment to increase the Integral by 50% of the previous Integral effect. Continue in this manner until an acceptable response curve is obtained.

Accel/Decel Curves Setup

The GTC190A requires the user to configure an acceleration limiting curve and a deceleration limiting curve. The forcing function of this curve is the CDP signal. The output is a fuel valve position demand that equals the maximum (for Accel) or minimum (for Decel) fuel flow allowed for a given CDP. The information below will assist the user in programming these parameters in the service category. There are separate schedules for both gas and liquid fuels. For each curve, a maximum of five pairs (x,y) of data points can be defined. Any unused curve points should be at the end of the schedule and tuned out of the way (max CDP, 100).

IMPORTANT

NOTE ON ALL CURVES IN THE GTC PRODUCTS—The control software will not allow the user to tune X values (inputs) of curves to a value equal to or higher than the point above it, or equal to or lower than the point below it. This is to protect the curve block from calculating infinite slopes that could cause problems during block runtime execution.

CDP Accel Schedule (Service–CDP to Fuel Limit Curve)—The curve-defined acceleration rate limiter based on CDP scaled in same units as above. Outputs are scaled from 0 to 100% of valve travel. Since gas flow is not proportional to actuator current or valve angle, the Accel Schedule breakpoints should be calculated based on fuel flow and then fuel flow converted to actuator current using valve test data.

Note on completing Accel and Decel Schedules: Gas flow in pph or BTU/hr vs. actuator current data is required. Also required are the turbine manufacturer's acceleration and deceleration specifications.

- Plot a piece-wise linear approximation to the required accel and decel schedules with four slopes maximum for accel and decel. This plot determines the breakpoints in the schedules entered into the Atlas-II™ Digital Control System. Note that line slopes established by the schedule points do not change to zero at endpoints. If actuator current is to be held constant for varying CDP then a zero slope line segment must be created in the schedule.
- 2. Rescale the dependent variable (gas mass flow or heat consumption) to match the units used in the gas flow data.
- 3. Now plot the valve test data with the dependent variable scaled as above vs. actuator current. For greatest accuracy, a non-linear curve fit of the data should be used, however a piece-wise linear plot is generally acceptable.
- 4. Using the Y axis (gas flow) values of the endpoints and breakpoints from the plot of step 1, determine the corresponding actuator current values, which produce those flows in the plot of step 3.
- 5. Find the X axis (CDP) values of the endpoints and breakpoints from the plot of step 1.
- 6. Rescale the actuator current values of step 4 on a scale of 0 to 100 corresponding to min. to max. stops on the valve. If desired, plot this normalized actuator current as a function of CDP. This is the schedule to be entered in the Atlas-II Digital Control System.

For example, see the linearized sample manufacturers specification, Figure 8-3, and the valve test data example Table 8-1.

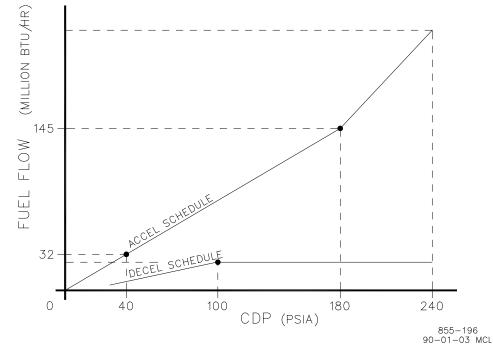


Figure 8-3. Linearized Flow Schedule

Valve Angle (deg)	Actuator Current (mA)	Gas Flow (pph)
9.0	32.8	435
9.8	35.0	515
16.5	54.7	1580
22.6	72.1	3060
28.0	86.3	4689
34.9	107.2	7059
41.8	127.7	9378
51.5	155.1	12488

Table 8-1. Valve Test Data

Given the gas lower heating value of 20 000 BTU/lbm, flow in million BTU/h can be rescaled for pph as in the valve test data. The accel schedule breakpoint is at 7250 pph (145 million BTU/h) fuel flow and 180 psia CDP. From the valve test data, this point corresponds to 108.9 mA of actuator current. For this example, a linear interpolation between valve test data points was used to find the actuator current (step 3 above). However, better accuracy would result using a non-linear curve fit. Two more points are required to establish the two-slope accel schedule. The first is (40 psia, 1600 pph) which corresponds to 54.9 mA. The second endpoint is (240 psia, 10500 pph) which corresponds to an actuator current of 137.6 mA. Now rescale actuator current for 0 to 100 for min. to max. travel of the valve. From the valve data, min. travel is at 35.0 mA and max travel is at 155.1 mA. This gives:

CDP	Act. Current	Act. Signal
(psia)	(mA)	(0 to 100)
40	54.9	16.6
180	108.9	61.5
240	137.6	85.4

Where CDP is the Accel Schedule input value to be entered and ACT. SIGNAL is the output value to be entered. The same procedure is followed for the Decel Schedule.

DN/DT Accel Schedule is biased by GG speed derivative. When DN/DT PID control is used, the acceleration (or deceleration) schedule values must be in terms of GG speed (for inputs) and GG derivative (for outputs).

Poor Valve Response

What can often appear as a tuning problem, is often poor valve response. This can be due to a sticky actuator or inconsistent hydraulic pressure to the actuator. Changing hydraulic oil properties can also have an adverse affect to the control of the turbine.

The hydraulic supply to the actuator must be a consistent pressure over the entire operating range of the turbine.

The Atlas-II Digital Control System does have logic built in to account for a sticky valve/actuator assembly. If you are having problems with the control of the turbine and the loops have been tuned and hydraulics verified, contact Woodward for service.

Common SIO Port Configurations

The following is a guideline for configuring a serial port interface from the control to a communication device. Items highlighted are required.

• • • • • • • • • • • • • • • • • • • •	nt Control Assistar el) (Tunables/Datale		Eventlatch	ServLink and Watch Window
BAUD 10 (38400)	10 (38400)	10 (38400)	10 (38400)	10 (38400)
BITS 2 (8 data)	2 (8 data)	2 (RTU-8 bits)	2 (8 data)	2 (RTU-8 bits)
STOP 1 (1 stop)	1 (1 stop)	1 (1 stop)	1 (1 stop)	1 (1 stop)
PARITY 1 (none)	1 (none)	1 (none)	1 (none)	1 (none)
MODE 2 (char)	1 (line)	1 (line)	1 (line)	1 (line)
FLOW 1 (off)	1 (off)	1 (off)	2 (xon-xoff)	1 (off)
ECHO 1 (off)	1 (off)	1 (off)	1 (off)	1 (off)
ENDLINE 3 (crlf)	3 (crlf)	3 (crlf)	3 (crlf)	1 (lf)
IGNCR 2 (on)	2 (on)	1 (off)	1 (off)	1 (off)

Table 8-2. Valve Test Data

Serial Null Modem Cable Reference

The following defines a standard null modem cable which can be purchased at any electronics store. This cable is useful for interfacing a Woodward control to a PC running Control Assistant, ServLink, or Watch Window.

GTC190A Gas Turbine Control/Generator Applications

Pinout Diagram for a 9 pin to 9 pin null modem cable:

(1-4, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7)

RD2	\	/	2RD	(pin 2 is tied to pin 3)
TD3	/	\	3TD	(pin 3 is tied to pin 2)
DTR4	\	/	4DTR	(pin 4 is tied to pin 1, then to 6
DCD1	\	/	1DCD	on both sides)
DSR6	/	\	6DSR	(both are tied to pin 6)
SG5			5SG	
RTS7	\	/	7RTS	(pin 7 is tied to pin 8)
CTS8	/	\	8CTS	(pin 8 is tied to pin 7)
RI9			9RI	(pins 9 and 9 are terminated)

Pin Definitions

- CTS Clear To Send. The CTS line is asserted by the PC (as DCE device) when it is ready to receive data.
- DCD Data Carrier Detect. The DCD line is asserted when the data link is established.
- DCE Data Communications Equipment. Refers to the modem in a computer to modem setup.
- DSR Data Set Ready. The DSR line is asserted by the DCE when it is ready to communicate with the DTE.
- DTE Data Terminal Equipment. Refers to the computer in a computer to modem setup.
- DTR Data Terminal Ready. The DTR line is asserted by the DTE when it is ready to communicate with the DCE.
- FG Field Ground. A protective line used to ground the DCE.
- RD Receive Data. The RD line is used by the DCE to send data to the DTE.
- RIRing Indicator. The RI line is asserted by the DCE when a ring is detected.RTSRequest To Send. The RTS line is asserted by the DTE when it wants to
- transmit data to the DCE. SG Signal Ground. The common return (and voltage baseline) for the various signal lines.
- TD Transmit Data. The TD line is used by the DTE to send data to the DCE.

Chapter 9. Service Options

Product Service Options

If you are experiencing problems with the installation, or unsatisfactory performance of a Woodward product, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact the manufacturer or packager of your system.
- Contact the Woodward Full Service Distributor serving your area.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter) and discuss your problem. In many cases, your problem can be resolved over the phone. If not, you can select which course of action to pursue based on the available services listed in this chapter.

OEM and Packager Support: Many Woodward controls and control devices are installed into the equipment system and programmed by an Original Equipment Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the programming is password-protected by the OEM or packager, and they are the best source for product service and support. Warranty service for Woodward products shipped with an equipment system should also be handled through the OEM or Packager. Please review your equipment system documentation for details.

Woodward Business Partner Support: Woodward works with and supports a global network of independent business partners whose mission is to serve the users of Woodward controls, as described here:

- A **Full Service Distributor** has the primary responsibility for sales, service, system integration solutions, technical desk support, and aftermarket marketing of standard Woodward products within a specific geographic area and market segment.
- An **Authorized Independent Service Facility (AISF)** provides authorized service that includes repairs, repair parts, and warranty service on Woodward's behalf. Service (not new unit sales) is an AISF's primary mission.
- A **Recognized Engine Retrofitter (RER)** is an independent company that does retrofits and upgrades on reciprocating gas engines and dual-fuel conversions, and can provide the full line of Woodward systems and components for the retrofits and overhauls, emission compliance upgrades, long term service contracts, emergency repairs, etc.
- A **Recognized Turbine Retrofitter (RTR)** is an independent company that does both steam and gas turbine control retrofits and upgrades globally, and can provide the full line of Woodward systems and components for the retrofits and overhauls, long term service contracts, emergency repairs, etc.

A current list of Woodward Business Partners is available at **www.woodward.com/support**.

Woodward Factory Servicing Options

The following factory options for servicing Woodward products are available through your local Full-Service Distributor or the OEM or Packager of the equipment system, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is originally shipped from Woodward or a service is performed:

- Replacement/Exchange (24-hour service)
- Flat Rate Repair
- Flat Rate Remanufacture

Replacement/Exchange: Replacement/Exchange is a premium program designed for the user who is in need of immediate service. It allows you to request and receive a like-new replacement unit in minimum time (usually within 24 hours of the request), providing a suitable unit is available at the time of the request, thereby minimizing costly downtime. This is a flat-rate program and includes the full standard Woodward product warranty (Woodward Product and Service Warranty 5-01-1205).

This option allows you to call your Full-Service Distributor in the event of an unexpected outage, or in advance of a scheduled outage, to request a replacement control unit. If the unit is available at the time of the call, it can usually be shipped out within 24 hours. You replace your field control unit with the like-new replacement and return the field unit to the Full-Service Distributor.

Charges for the Replacement/Exchange service are based on a flat rate plus shipping expenses. You are invoiced the flat rate replacement/exchange charge plus a core charge at the time the replacement unit is shipped. If the core (field unit) is returned within 60 days, a credit for the core charge will be issued.

Flat Rate Repair: Flat Rate Repair is available for the majority of standard products in the field. This program offers you repair service for your products with the advantage of knowing in advance what the cost will be. All repair work carries the standard Woodward service warranty (Woodward Product and Service Warranty 5-01-1205) on replaced parts and labor.

Flat Rate Remanufacture: Flat Rate Remanufacture is very similar to the Flat Rate Repair option with the exception that the unit will be returned to you in "like-new" condition and carry with it the full standard Woodward product warranty (Woodward Product and Service Warranty 5-01-1205). This option is applicable to mechanical products only.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned for repair, please contact your Full-Service Distributor in advance to obtain Return Authorization and shipping instructions.

When shipping the item(s), attach a tag with the following information:

- return number;
- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part number(s) and serial number(s);
- description of the problem;
- instructions describing the desired type of repair.

Packing a Control

Use the following materials when returning a complete control:

- protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls;
- a strong tape around the outside of the carton for increased strength.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

Replacement Parts

When ordering replacement parts for controls, include the following information:

- the part number(s) (XXXX-XXXX) that is on the enclosure nameplate;
- the unit serial number, which is also on the nameplate.

Engineering Services

Woodward offers various Engineering Services for our products. For these services, you can contact us by telephone, by email, or through the Woodward website.

- Technical Support
- Product Training
- Field Service

Technical Support is available from your equipment system supplier, your local Full-Service Distributor, or from many of Woodward's worldwide locations, depending upon the product and application. This service can assist you with technical questions or problem solving during the normal business hours of the Woodward location you contact. Emergency assistance is also available during non-business hours by phoning Woodward and stating the urgency of your problem.

Product Training is available as standard classes at many of our worldwide locations. We also offer customized classes, which can be tailored to your needs and can be held at one of our locations or at your site. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability.

Field Service engineering on-site support is available, depending on the product and location, from many of our worldwide locations or from one of our Full-Service Distributors. The field engineers are experienced both on Woodward products as well as on much of the non-Woodward equipment with which our products interface.

For information on these services, please contact us via telephone, email us, or use our website and reference **www.woodward.com/support**, and then *Customer Support*.

How to Contact Woodward

For assistance, call one of the following Woodward facilities to obtain the address and phone number of the facility nearest your location where you will be able to get information and service.

Electrical Power Systems	Engine Systems	Turbine Systems
Facility Phone Number	<u>Facility</u> <u>Phone Number</u>	Facility Phone Number
Australia+61 (2) 9758 2322	Australia +61 (2) 9758 2322	Australia +61 (2) 9758 2322
Brazil +55 (19) 3708 4800	Brazil +55 (19) 3708 4800	Brazil +55 (19) 3708 4800
China+86 (512) 6762 6727	China+86 (512) 6762 6727	China+86 (512) 6762 6727
Germany:	Germany:	
Kempen +49 (0) 21 52 14 51	-	
Stuttgart +49 (711) 78954-0	Stuttgart +49 (711) 78954-0	
India +91 (129) 4097100	India +91 (129) 4097100	India +91 (129) 4097100
Japan+81 (43) 213-2191	Japan+81 (43) 213-2191	Japan+81 (43) 213-2191
Korea+82 (51) 636-7080	Korea+82 (51) 636-7080	Korea+82 (51) 636-7080
	The Netherlands -+31 (23) 5661111	The Netherlands -+31 (23) 5661111
Poland +48 12 618 92 00		
United States+1 (970) 482-5811	United States+1 (970) 482-5811	United States+1 (970) 482-5811

You can also contact the Woodward Customer Service Department or consult our worldwide directory on Woodward's website (**www.woodward.com/support**) for the name of your nearest Woodward distributor or service facility.

For the most current product support and contact information, please refer to the latest version of publication **51337** at **www.woodward.com/publications**.

Technical Assistance

If you need to telephone for technical assistance, you will need to provide the following information. Please write it down here before phoning:

General

Your Name	
Site Location	
Phone Number	
Fax Number	

Prime Mover Information

Engine/Turbine Model Number	
Manufacturer	
Number of Cylinders (if applicable)	
Type of Fuel (gas, gaseous, steam, etc)	
Rating	
Application	

Control/Governor Information

Please list all Woodward governors, actuators, and electronic controls in your system:

Woodward Part Number and Revision Letter	

Control Description or Governor Type

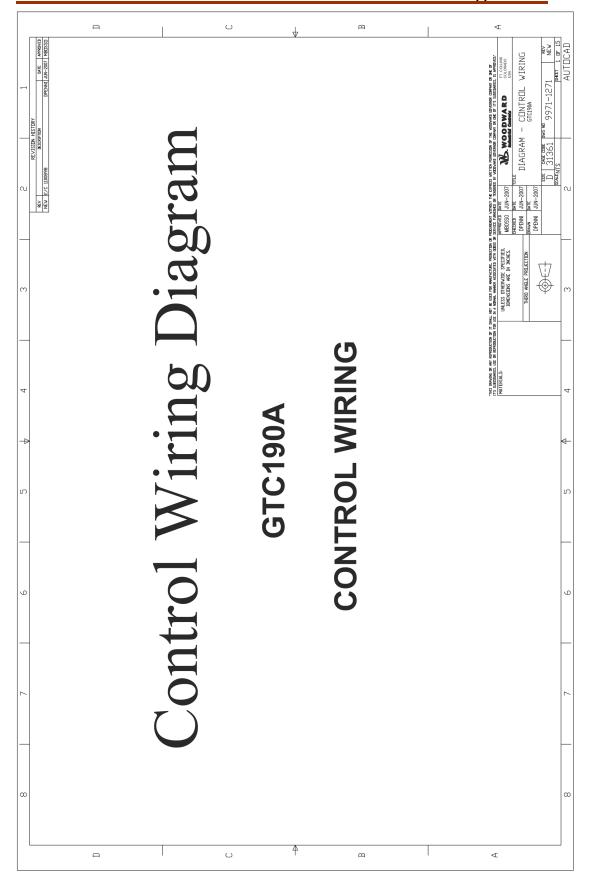
Serial Number

Woodward Part Number and Revision Letter

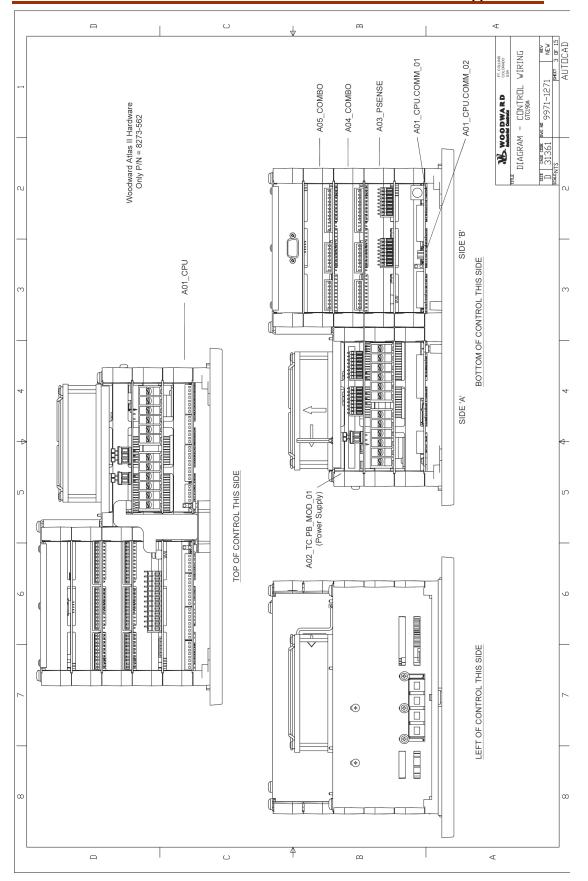
Control Description or Governor Type

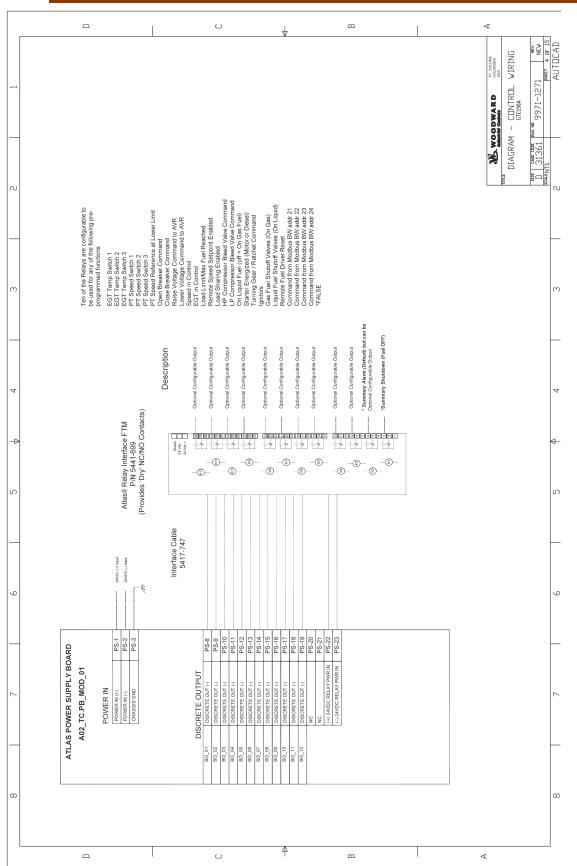
Serial Number

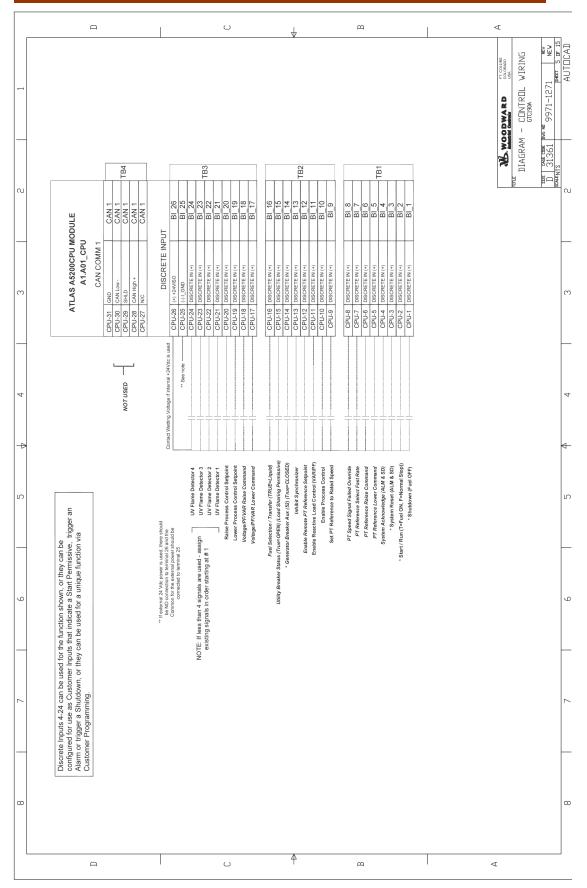
Woodward Part Number and Revision Letter

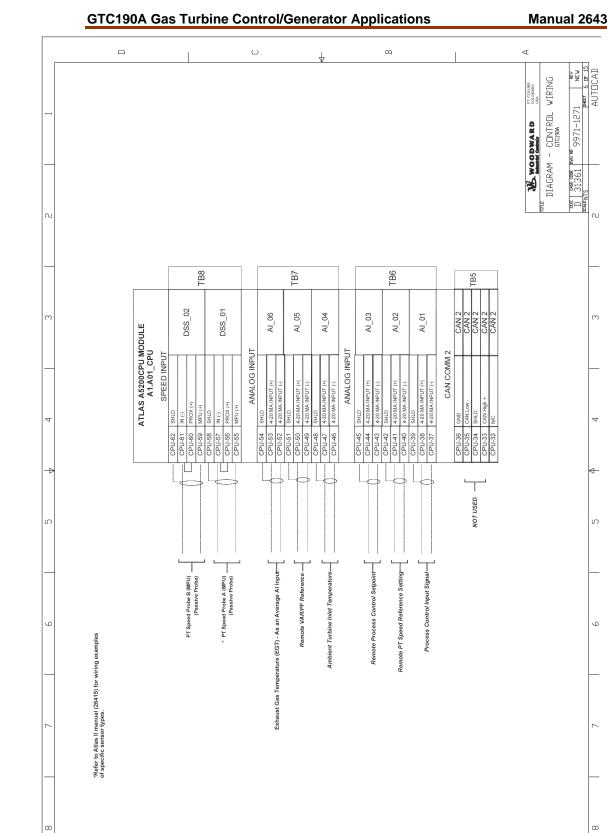

Control Description or Governor Type

Serial Number


If you have an electronic or programmable control, please have the adjustment setting positions or the menu settings written down and with you at the time of the call.

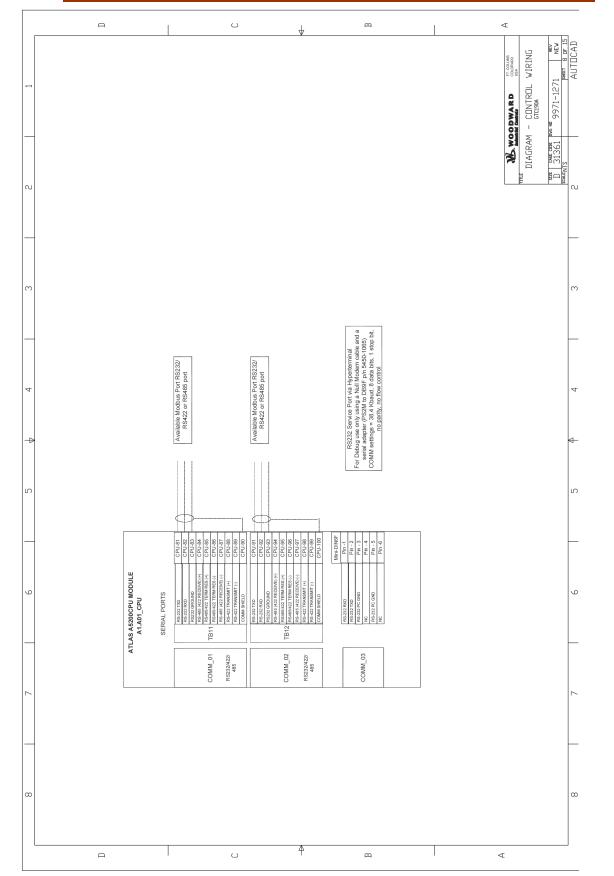

Appendix A. System Input/Output Signal Layout

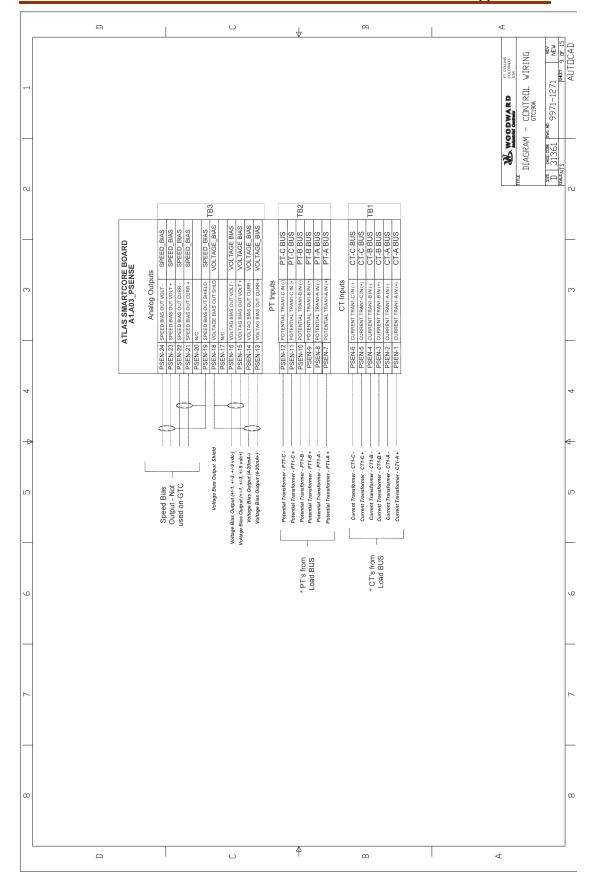

Control wiring diagram 9971-1271 is on the following pages.

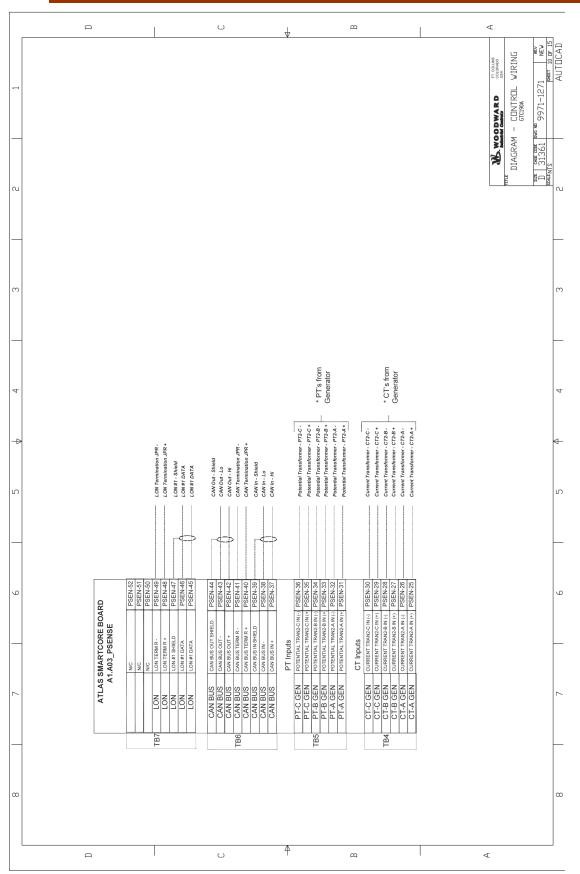


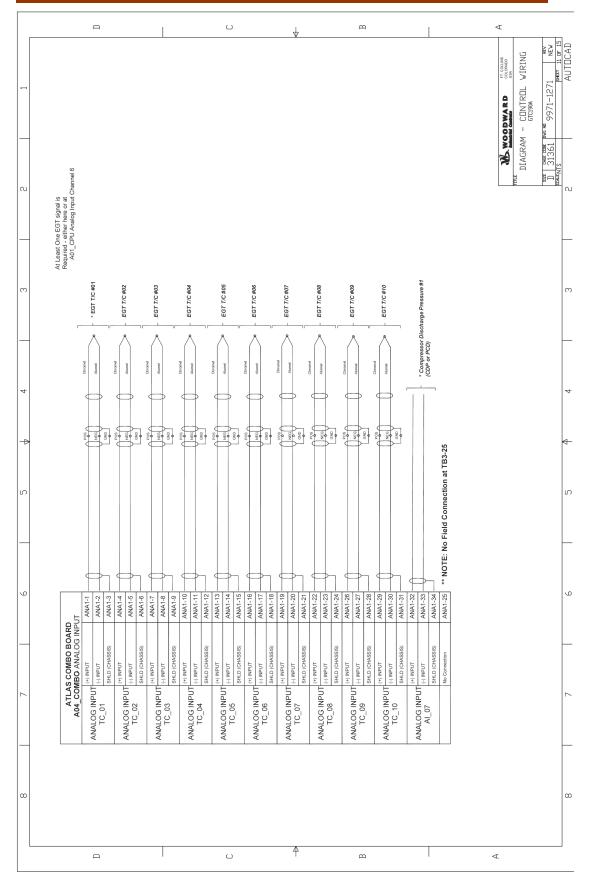
		Г	à								Ċ	J				\downarrow	В			⊲	
																				WARD Freedoms	же ю 9971-1271 Кем NEW AUTOCAD
																				W. WOODWARD DIAGRAM - CONTRI GTC190A	смее сше 31361 S
N																		.A(це 111 111 111 111 111 111 111 111 111 1	
	REV. DATE	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007	NOV-2007		e GTC19(ned via	ier:		_
ν	RE	Z	N	Z	Z	Z	Z	Z	ž	N	N	N	Z	N	Z	N		ed by th rogramr	ng manr		m
								JTS		IAS OUTPUTS	UNICATIONS		S		S	(1)		are requir	the followir		
4	DESCRIPTION						UTS	ATOR OUTPL		GE/SPEED B	I/CAN COMMI	(0)	IGNAL INPUT	0	IGNAL INPUT	DFIBUS COMIN		oints that ed as sho	igured in t		4
Þ	DESCR		EET	0	TE OUTPUT	0	& SPEED INP	S AND ACTU	PORTS	s AND VOLTA	CT's AND LON	ALOG INPUT	S & SPEED S	ALOG INPUT:	S & SPEED S	FLEX IO (PRG		xed I/O p e to be us	ts is conf ble Input mA Inpu		4
n		COVER SHEET	SHEET INDEX SHEET	ATLAS II CHASSIS	POWER & DISCRETE OUTPUTS	DISCRETE INPUTS	ANALOG INPUTS & SPEED INPUTS	ANALOG OUTPUTS AND ACTUATOR OUTPUTS	COMMUNICATION PORTS	LOAD BUS PT/CT'S AND VOLTAGE/SPEED BIAS OUTPUTS	GENERATOR PT/CT's AND LON/CAN COMMUNICATIONS	T/C INPUTS & ANALOG INPUTS	ANALOG OUTPUTS & SPEED SIGNAL INPUTS	T/C INPUTS & ANALOG INPUTS	ANALOG OUTPUTS & SPEED SIGNAL INPUTS	ALLEN-BRADLEY FLEX IO (PROFIBUS COMM)		ns with an asterisk are fixed I/O points that are required by the GTC ³ O points are configurable to be used as shown or reprogrammed via	Combo boards is confi Thermocouple Input Analog 4-20 mA Input		ى س
۵	DESIGNATION	COVER	INDEX	CHASSIS LAYOUT	PS BOARD	A02 SMARTCORE1	A02 SMARTCORE2	A02 SMARTCORE3	A02 SMARTCORE4	A03 POWERSENSE1	A03 POWERSENSE2	A04 ANALOGCOMBO1	A04 ANALOGCOMBO2	A05 ANALOGCOMBO1	A05 ANALOGCOMBO2	DISTRIBUTED IO		 Descriptions with an asterisk are fixed I/O points that are required by the GTC190A. All other I/O points are configurable to be used as shown or reprogrammed via 	customer programming. 3) Each of the 2 Analog Combo boards is configured in the following manner: Channels 1-10 Thermocouple Input Channels 11-15 Analog 4-20 mA Input		٩
	SHEET NUMBER	SHEET 1	SHEET 2	SHEET 3	SHEET 4	SHEET 5	SHEET 6	SHEET 7	SHEET 8	SHEET 9	SHEET 10	SHEET 11	SHEET 12	SHEET 13	SHEET 14	SHEET 15	NOTES:	1) Descriptio 2) All other I/	3) Eac		
_																					
0																					ω
			à								C					4	 м			<	

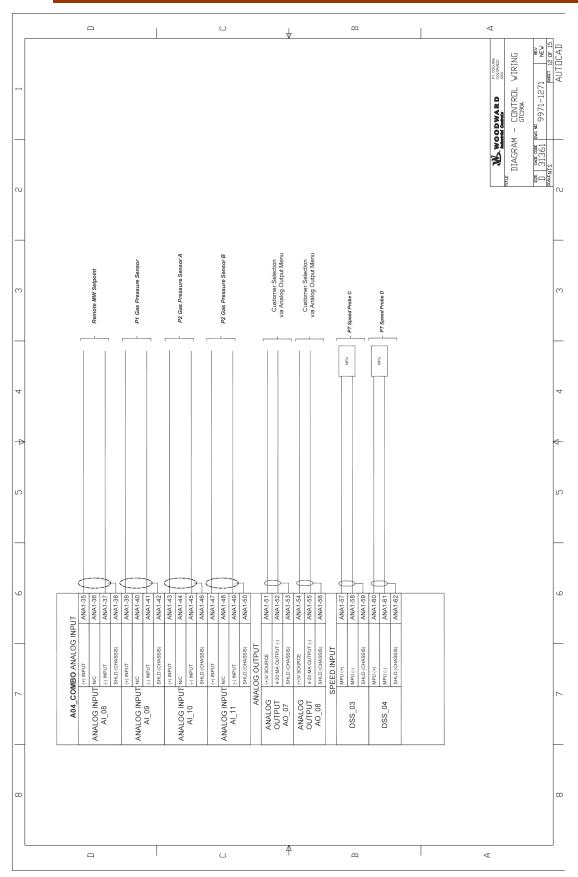
4

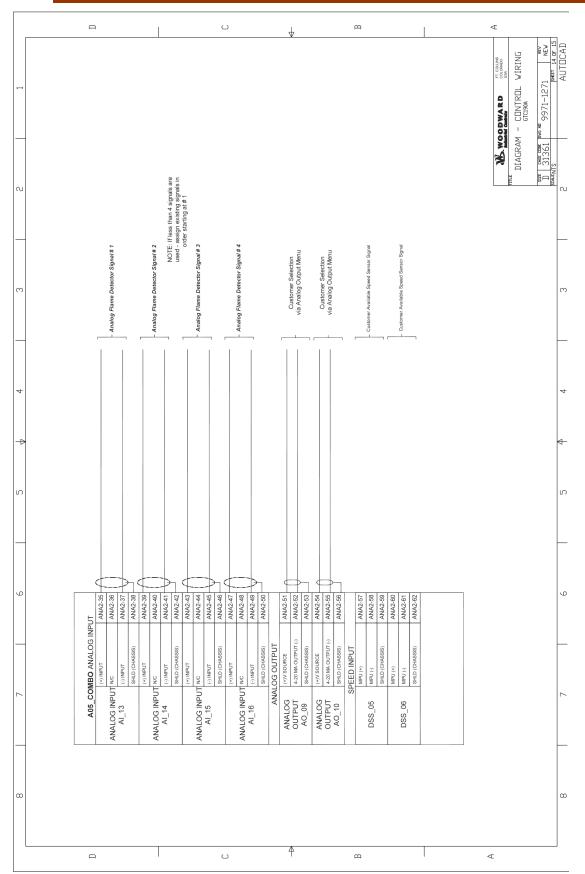

щ

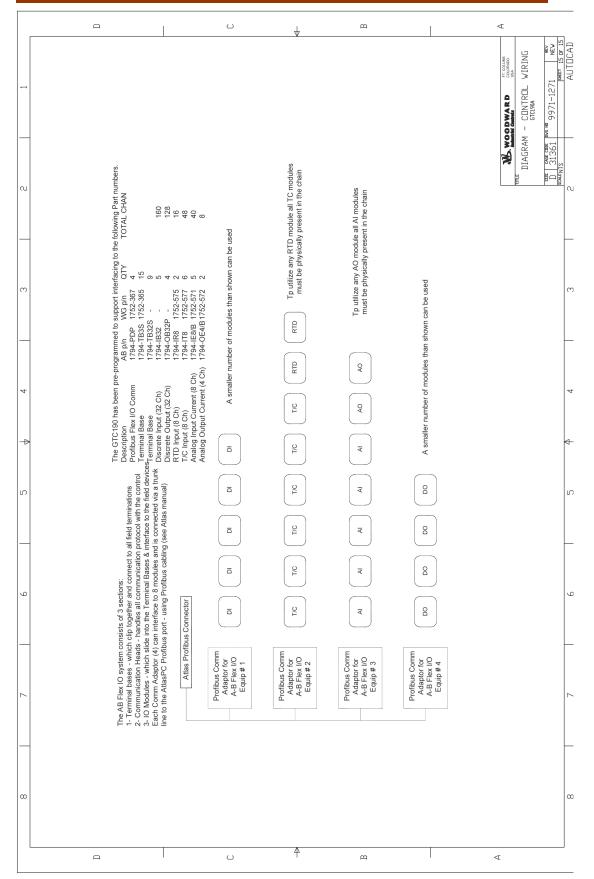

ပ


⊲


П


<u>п</u>		₩ ^m	⊄
Each of the 8 Analog Outputs can be seeded via a menu with the following	Shaft Speed Speed Reference Speed Reference Gas Fuel Valve bermand Gas Fuel Valve bermand Garar Carr Temperature Gararator Volkamp Douput Generator Megavart Output Generator Volkamp Output Generator Volkamp Output Generator Volkamp Output Generator Volkamp Output Unlity Bas Megavar Output Unlity Bas Megavar Output Unlity Bas Kover Factor Output Unlity Bas Volage	viprinscope command from Mochus ANV addr 14 command from Mochus ANV addr 15 command from Mochus ANV addr 17 command from Mochus ANV addr 17 command from Mochus ANV addr 17 command from Value Demand 0-100 (Tunable)	The second secon
ш <i>ю</i> а	© ∞∞ш0⊒0000000	ection ut Menu aut Menu liection aut Menu aut Menu	2
		Customer Se via Analog Out Customer Se via Analog Out via Analog Out via Analog Out via Analog Out via Analog Out (4-20 or 20-160 mA)	
*			
	ATLAS 45200CPU MODULE A1.A01_CPU Analon Onitodis	SHLD Control output (-) 84.0 4-20 MA OUTPUT (-) (-v) SOURCE (-v) SOURCE 84.0 (-v) SOURCE 1789 84.0 ACT (-) ACtuator Output ACT (-) ACT (-)	ACT_2 AcT (*) CPU-61 8410 CPU-63
		τ A A A A	¥
		A m	₹





		ں ں	\downarrow	m	<
1					M WOODWARD Controls DIAGRAM - CONTROL WIRING GIOSMA - CONTROL WIRING 31361 Per 9971-1271 REV 13 AUTOCAD
വ					THE DIAGRA
_	-				_
m	- EGTT/C#11	 EGT T/C #13 EGT T/C #14 EGT T/C #15 EGT T/C #15 	- EGT 7/C #16 - EGT 7/C #17	 EGT 1/C#18 EGT 1/C#19 EGT 1/C#20 EGT 1/C #20 Pressure #2 	m
-	Amme Amme Amme Amme Amme Amme Amme Amme	Aumel Chroned Aumel Aumel	Chromoti Aumei Aumei Chromoti Aumei	Auran 66770C# Connent 66770C# Auran 0 Connent 66770C# Auran 0 Compressor Disochange Pressure #2	or PCD)
4					
۴					-⊕
ſ					* NOTE: No Field Connection at TB3-25
-					KOTE: Xo Te: Xo Fic
9	NA2-1 NA2-2 NA2-3 NA2-6 NA2-6	ANA2-7 ANA2-8 ANA2-9 ANA2-10 ANA2-11 ANA2-13 ANA2-13 ANA2-13 ANA2-13	ANA2-15 ANA2-17 ANA2-17 ANA2-18 ANA2-20 ANA2-22 ANA2-22	ANA2-23 ANA2-23 ANA2-25 ANA2-25 ANA2-25 ANA2-25 ANA2-25 ANA2-3	
-		515) 515)		SSIS) SSIS) SSIS)	
7			1C_15 5HLD (CHASSIS) ANALOG INPUT (HINPUT TC_16 HILD (CHASSIS) ANALOG INPUT (HINPUT TC_17 HILD (CHASSIS) ANALOG INPUT (HINPUT TC_17 HILD (CHASSIS) HILD (CHASSIS) (HILD (CHASSIS)	ANALOG INPUT TC_18 SHL (CHASSIS) SHL (CHASSIS) ANALOG INPUT TC_19 SHL (CHASSIS) SHL (CHAS	12 SHLD (CHASSIS) No Connection 7
_	A05_ ANALOG IN TC_11 ANALOG IN	ANALOC TC_ ANALOC ANALOC ANALOC	ANALOC ANALOC ANALOC ANALOC	ANALOC TC_ ANALOC ANALOC TC_ TC_ TC_ ANALOC	ב'
8					ω
	A	ں ا	4	Å	<

Appendix B. Modbus List

The following is the Modbus List generated from the Application software. This information is sent out from the control in 2 Modbus blocks (LOCAL and REMOTE). These can be output on a variety of communication channels (max of 2 ports to each Modbus block) – serial ports COM1 and COM2, and on Ethernet ports 5002, 5003, 5004, 5005 (UDP).

WOODWARD GOVERNOR COMPANY INDUSTRIAL CONTROLS DIVISION FORT COLLINS, COLORADO, U.S.A.

Woodward MODBUS Slave Address Information FileName: 5418-2349.GAP File created on 10/23/07 Rev: NEW P/N: 5418-2349 Project: 90494 GAP 2.18B / CODER 4.04 GTC190A MASTER SECOND RING GAP FILE W/ INTERFACES TO DISTRIB IO & LADDER LOGIC

MODBUS_S Block Name : MODBUS_COM.MOD_LOC and MODBUS_COM.MOD_REM

Boolean Writes (RPTbw)

Addr	Input	Description
0:0001		SHUTDOWN
0:0002		START
0:0003		RESET
0:0004		ACKNOWLEDGE
0:0005		SPEED REF LOWER
0:0006		SPEED REF RAISE
0:0007		SPD FAST RATE SELECT
0:0008		SPEED SIGNAL OVERRIDE
0:0009		SET REF TO RATED SPD
0:0010		ENABLE PROCESS CONTROL
0:0011		ENABLE VAR/PF CONTROL
0:0012		ENABLE REM PT REFERENCE
0:0013		INHIBIT SYNCHRONIZER
0:0014		GEN BREAKER STATUS
0:0015		UTIL BREAKER STATUS
0:0016		FUEL TRANSFER (TRUE = LIQ)
0:0017		LOWER VOLTAGE (VAR/PF) CMD
0:0018		RAISE VOLTAGE (VAR/PF) CMD
0:0019		LOWER PROCESS SETPOINT
0:0020		RAISE PROCESS SETPOINT
0:0021		FLAME DETECTOR A
0:0022		FLAME DETECTOR B
0:0023		FLAME DETECTOR C
0:0024		FLAME DETECTOR D
0:0025		Enable Output Forcing Mode
0:0026		Force-Energize Output #01 Relay

Manual 26432	GTC190A Gas Turbine Control/Generator Applications
0:0027	Force-Energize Output #02 Relay
0:0028	Force-Energize Output #03 Relay
0:0029	Force-Energize Output #04 Relay
0:0030	Force-Energize Output #05 Relay
0:0031	Force-Energize Output #06 Relay
0:0032	Force-Energize Output #07 Relay
0:0033	Force-Energize Output #08 Relay
0:0034	Force-Energize Output #09 Relay
0:0035	Force-Energize Output #10 Relay
0:0036	Force-Energize Output #11 Relay
0:0037	Force-Energize Output #12 Relay
0:0038	Manual Crank/Motor
0:0039	Go to Base Load Setpoint
0:0040	
0:0041	
0:0042	FUEL TRANSFER HOLD
0:0043	OPEN GEN BREAKER CMD
0:0044	SELECT PEAK MODE
0:0045	
0:0046	
0:0047	
0:0048	START DATALOG COLLECTING
0:0049	STOP DATALOG COLLECTING
0:0050	
0:0051	Available for
thru	Custom
0:0200	Inputs
Boolean Reads (RPTbr)	
Addr Input	Description
1:0001 A02_TC.BI_01.BI_/	-
1:0002 A02_TC.BI_02.BI_/	
1:0003 A02_TC.BI_03.BI_/	
1:0004 A02 TC.BI 04.BI	
1:0005 A02 TC.BI 05.BI	
1:0006 A02_TC.BI_06.BI_/	
1:0007 A02_TC.BI_07.BI_/	
1:0008 A02_TC.BI_08.BI_/	
1:0009 A02_TC.BI_00.BI_/	
1:0010 A02_TC.BI_09.BI_/	
1:0010 A02_TC.BI_10.BI_/	
1:0012 A02_TC.BI_12.BI_/	
1:0013 A02_TC.BI_13.BI_/	
1:0014 A02_TC.BI_14.BI_/	
1:0015 A02_TC.BI_15.BI_/	
1:0016 A02_TC.BI_16.BI_/	
1:0017 A02_TC.BI_17.BI_/	
1:0018 A02_TC.BI_18.BI_/	ATL RAISE VOLTAGE (VAR/PF) CMD

1:0019 A02 TC.BI 19.BI ATL 1:0020 A02 TC.BI 20.BI ATL 1:0021 A02 TC.BI 21.BI ATL 1:0022 A02_TC.BI_22.BI_ATL 1:0023 A02 TC.BI 23.BI ATL 1:0024 A02_TC.BI_24.BI_ATL 1:0025 FALSE 1:0026 A02_PB_MO1.BO_01.DISPLAY 1:0027 A02_PB_MO1.BO_02.DISPLAY 1:0028 A02 PB MO1.BO 03.DISPLAY 1:0029 A02_PB_MO1.BO_04.DISPLAY 1:0030 A02 PB MO1.BO 05.DISPLAY 1:0031 A02_PB_MO1.BO_06.DISPLAY 1:0032 A02 PB MO1.BO 07.DISPLAY 1:0033 A02_PB_MO1.BO_08.DISPLAY 1:0034 A02 PB MO1.BO 09.DISPLAY 1:0035 A02_PB_MO1.BO_10.DISPLAY 1:0036 A02_PB_MO1.BO_11.DISPLAY 1:0037 A02 PB MO1.BO 12.DISPLAY 1:0038 A2_PS_OUTB.PTUNITINFO.EQ 1:0039 A2 PS OUTB.CTUNITINFO.EQ 1:0040 A2_PS_OUTG.PWRUNITS.EQ 1:0041 A2_PS_OUTB.PWRUNITS.EQ 1:0042 SYNC_SEQ.DISABLED.B_NAME 1:0043 SYNC SEQ.CHECK.B NAME 1:0044 SYNC_SEQ.RUN.B_NAME 1:0045 SYNC SEQ.PERMISSIV.B NAME 1:0046 1:0047 1:0048 1:0049 1:0050 1:0051 CORE_BVAL.AUX1CTRL.B_NAME 1:0052 CORE_BVAL.SPDCTRL.B_NAME 1:0053 CORE_BVAL.EGTCTRL.B_NAME 1:0054 CORE BVAL.ACCELCTRL.B NAME 1:0055 CORE_BVAL.STRTCTRL.B_NAME 1:0056 CORE BVAL.AUX2CTRL.B NAME 1:0057 CORE_BVAL.MWLIMCTRL.B_NAME 1:0058 CORE_BVAL.EGTDV_CTRL.B_NAME 1:0059 CORE_BVAL.DECCTRL.B_NAME 1:0060 CORE_BVAL.FUELOFCTRL.B_NAME 1:0061 CORE_BVAL.GAS_100.B_NAME 1:0062 CORE_BVAL.LIQ_100.B_NAME 1:0063 1:0064 LL.MP_WATCH.B_NAME 1:0065 CNFG BI 01.SD FUEL.OR 1:0066 CNFG_BI_02.START_RUN.OR 1:0067 CNFG_BI_03.RESET.OR 1:0068 CNFG_BI_04.ACKN.OR

LOWER PROCESS SETPOINT RAISE PROCESS SETPOINT FLAME DETECTOR A FLAME DETECTOR B FLAME DETECTOR C FLAME DETECTOR D

Synchronizer Disabled Synchronizer in Check Mode Synchronizer in Run Mode Synchronizer in Permissive Mode

AUX 1 in Control Speed in Control EGT in Control ACCEL in Control Start Ramp in Control AUX 2 in Control MW Limit in Control

Ladder Logic is Running

1:0069 CNFG BI 05.SPD LOWER.OR 1:0070 CNFG BI 06.SPD RAISE.OR 1:0071 CNFG BI 07.PT FSTRATE.OR 1:0072 CNFG_BI_08.SPD_OVRIDE.OR 1:0073 CNFG_BI_09.PT_RATED.OR 1:0074 CNFG_BI_10.ENA_PROCES.OR 1:0075 CNFG_BI_11.ENA_VARPF.OR 1:0076 CNFG_BI_12.REM_SPDREF.OR 1:0077 CNFG_BI_13.SYNC_INHIB.OR 1:0078 CNFG BI 14.GBRKR CLOS.OR 1:0079 CNFG BI 15.UBRKR OPEN.OR 1:0080 CNFG BI 16.FUEL XFER.OR 1:0081 CNFG_BI_17.LWR_VOLTS.OR 1:0082 CNFG_BI_18.RAZ_VOLTS.OR 1:0083 CNFG_BI_19.LWR_PROCES.OR 1:0084 CNFG BI 20.RAZ PROCES.OR 1:0085 CNFG_BI_21.FLAMEDET_A.OR 1:0086 CNFG_BI_22.FLAMEDET_B.OR 1:0087 CNFG BI 23.FLAMEDET C.OR 1:0088 CNFG BI 24.FLAMEDET D.OR 1:0089 CALMODE.CAL PERM.AND 1:0090 CALMODE.CALMODE.B_NAME 1:0091 1:0092 SEQ.GL_X_HOLD.OR 1:0093 START.START PERM.AND 1:0094 SD_SUM.SHUTDOWN.B_NAME 1:0095 SD SUM.ANY OPNBRK.OR 1:0096 ALM SUM.ALARMS.OR 1:0097 EVENTS.ALM_OUT_C.B_NAME 1:0098 EVENTS.SD SOFT C.B NAME 1:0099 EVENTS.SD_HARD_C.B_NAME 1:0100 1:0101 ALM_CORE.EVENT001.B_ALARM 1:0102 ALM CORE.EVENT002.B ALARM 1:0103 ALM_CORE.EVENT003.B_ALARM 1:0104 ALM CORE.EVENT004.B ALARM 1:0105 ALM CORE.EVENT005.B ALARM 1:0106 ALM CORE.EVENT006.B ALARM 1:0107 ALM CORE.EVENT007.B ALARM 1:0108 ALM_CORE.EVENT008.B_ALARM 1:0109 ALM_CORE.EVENT009.B_ALARM 1:0110 ALM_CORE.EVENT010.B_ALARM 1:0111 ALM CORE.EVENT011.B ALARM 1:0112 ALM_CORE.EVENT012.B_ALARM 1:0113 ALM CORE.EVENT013.B ALARM 1:0114 ALM CORE.EVENT014.B ALARM 1:0115 ALM CORE.EVENT015.B ALARM 1:0116 ALM_CORE.EVENT016.B_ALARM 1:0117 ALM_CORE.EVENT017.B_ALARM 1:0118 ALM_CORE.EVENT018.B_ALARM

Permissives Met for Calibration Mode Unit in Calibration Mode

Hold Fuel Transfer to Fuel Control COR Permissives Met to Start Unit Hard Shutdown Summary Soft Shutdown Summary Alarm Summary Summary Alarm from CORE Summary Soft SD from CORE Summary Hard SD from CORE ** EVENTS LIST STARTS AT 100 ** Shaft OVERSPEED ALM Level Shaft OVERSPEED SD Level Speed Signal Difference ALL SPEED SENSORS FAILED Shaft Overspeed Test Enabled CDP HIGH PRESSURE SD EGT Signal Low - post OVRD EGT OVERTEMP ALM EGT OVERTEMP SD Excessive EGT T/C Spread ALM Excessive EGT T/C Spread SD Excessive # of T/C Faults ALM Excessive # of T/C Faults SD ANALOG EGT SENSOR FAULT SINGLE EGT TC FAULT EGT T/C 01 DIFFERENCE ALM EGT T/C 02 DIFFERENCE ALM EGT T/C 03 DIFFERENCE ALM

1:0119 ALM CORE.EVENT019.B ALARM 1:0120 ALM CORE.EVENT020.B ALARM 1:0121 ALM CORE.EVENT021.B ALARM 1:0122 ALM_CORE.EVENT022.B_ALARM 1:0123 ALM CORE.EVENT023.B ALARM 1:0124 ALM_CORE.EVENT024.B_ALARM 1:0125 ALM_CORE.EVENT025.B_ALARM 1:0126 ALM_CORE.EVENT026.B_ALARM 1:0127 ALM_CORE.EVENT027.B_ALARM 1:0128 ALM CORE.EVENT028.B ALARM 1:0129 ALM CORE.EVENT029.B ALARM 1:0130 ALM CORE.EVENT030.B ALARM 1:0131 ALM_CORE.EVENT031.B_ALARM 1:0132 ALM CORE.EVENT032.B ALARM 1:0133 ALM_CORE.EVENT033.B_ALARM 1:0134 ALM CORE.EVENT034.B ALARM 1:0135 ALM_CORE.EVENT035.B_ALARM 1:0136 ALM_CORE.EVENT036.B_ALARM 1:0137 ALM CORE.EVENT037.B ALARM 1:0138 ALM CORE.EVENT038.B ALARM 1:0139 ALM CORE.EVENT039.B ALARM 1:0140 ALM_CORE.EVENT040.B_ALARM 1:0141 ALM CORE.EVENT041.B ALARM 1:0142 ALM_CORE.EVENT042.B_ALARM 1:0143 ALM CORE.EVENT043.B ALARM 1:0144 ALM_CORE.EVENT044.B_ALARM 1:0145 ALM CORE.EVENT045.B ALARM 1:0146 ALM CORE.EVENT046.B ALARM 1:0147 ALM CORE.EVENT047.B ALARM 1:0148 ALM_CORE.EVENT048.B_ALARM 1:0149 ALM_CORE.EVENT049.B_ALARM 1:0150 ALM_CORE.EVENT050.B_ALARM 1:0151 ALM_CORE.EVENT051.B_ALARM 1:0152 ALM CORE.EVENT052.B ALARM 1:0153 ALM_CORE.EVENT053.B_ALARM 1:0154 ALM CORE.EVENT054.B ALARM 1:0155 ALM CORE.EVENT055.B ALARM 1:0156 ALM CORE.EVENT056.B ALARM 1:0157 ALM_CORE.EVENT057.B_ALARM 1:0158 ALM_CORE.EVENT058.B_ALARM 1:0159 ALM_CORE.EVENT059.B_ALARM 1:0160 ALM_CORE.EVENT060.B_ALARM 1:0161 ALM CORE.EVENT061.B ALARM 1:0162 ALM_CORE.EVENT062.B_ALARM 1:0163 ALM CORE.EVENT063.B ALARM 1:0164 ALM CORE.EVENT064.B ALARM 1:0165 ALM CORE.EVENT065.B ALARM 1:0166 ALM_CORE.EVENT066.B_ALARM 1:0167 ALM CORE.EVENT067.B ALARM 1:0168 ALM_CORE.EVENT068.B_ALARM

EGT T/C 04 DIFFERENCE ALM EGT T/C 05 DIFFERENCE ALM EGT T/C 06 DIFFERENCE ALM EGT T/C 07 DIFFERENCE ALM EGT T/C 08 DIFFERENCE ALM EGT T/C 09 DIFFERENCE ALM EGT T/C 10 DIFFERENCE ALM EGT T/C 11 DIFFERENCE ALM EGT T/C 12 DIFFERENCE ALM EGT T/C 13 DIFFERENCE ALM EGT T/C 14 DIFFERENCE ALM EGT T/C 15 DIFFERENCE ALM EGT T/C 16 DIFFERENCE ALM EGT T/C 17 DIFFERENCE ALM EGT T/C 18 DIFFERENCE ALM Failure of 3 Adjacent T/C's Discrete Input Flame Detector FLT Analog Input Flame Detector FLT External Contact SD input All CDP Sensors Failed Starter Engaged - No Speed Detected Turbine Failed to Lite-Off Loss of Flame in Combustor Unit Failed to Reach Idle Speed Unit Failed to Reach Rated Speed

1:0169	ALM_CORE.EVENT069.B_ALARM
1:0170	ALM_CORE.EVENT070.B_ALARM
1:0171	ALM_CORE.EVENT071.B_ALARM
1:0172	ALM_CORE.EVENT072.B_ALARM
1:0173	ALM_CORE.EVENT073.B_ALARM
1:0174	ALM_CORE.EVENT074.B_ALARM
1:0175	ALM_CORE.EVENT075.B_ALARM
1:0176	ALM_CORE.EVENT076.B_ALARM
1:0177	ALM_CORE.EVENT077.B_ALARM
1:0178	ALM_CORE.EVENT078.B_ALARM
1:0179	ALM_CORE.EVENT079.B_ALARM
1:0180	ALM_CORE.EVENT080.B_ALARM
1:0181	ALM_CORE.EVENT081.B_ALARM
1:0182	ALM_CORE.EVENT082.B_ALARM
1:0183	ALM_CORE.EVENT083.B_ALARM
1:0184	ALM_CORE.EVENT084.B_ALARM
1:0185	ALM_CORE.EVENT085.B_ALARM
1:0186	ALM_CORE.EVENT086.B_ALARM
1:0187	ALM_CORE.EVENT087.B_ALARM
1:0188	ALM_CORE.EVENT088.B_ALARM
1:0189	ALM_CORE.EVENT089.B_ALARM
1:0190	ALM_CORE.EVENT090.B_ALARM
1:0191	ALM_CORE.EVENT091.B_ALARM
1:0192	ALM_CORE.EVENT092.B_ALARM
1:0193	ALM_CORE.EVENT093.B_ALARM
1:0194	ALM_CORE.EVENT094.B_ALARM
1:0195	ALM_CORE.EVENT095.B_ALARM
1:0196	ALM_CORE.EVENT096.B_ALARM
1:0197	ALM_CORE.EVENT097.B_ALARM
1:0198	ALM_CORE.EVENT098.B_ALARM
1:0199	ALM_CORE.EVENT099.B_ALARM
1:0200	ALM_CORE.EVENT100.B_ALARM
1:0201	ALARM.EVENT101.B_ALARM
1:0202	ALARM.EVENT102.B_ALARM
1:0203	ALARM.EVENT103.B_ALARM
1:0204	ALARM.EVENT104.B_ALARM
1:0205	ALARM.EVENT105.B_ALARM
1:0206	ALARM.EVENT106.B_ALARM
1:0207	ALARM.EVENT107.B_ALARM
1:0208	ALARM.EVENT108.B_ALARM
1:0209	ALARM.EVENT109.B_ALARM
1:0210	ALARM.EVENT110.B_ALARM
1:0211	ALARM.EVENT111.B_ALARM
1:0212	ALARM.EVENT112.B_ALARM
1:0213	ALARM.EVENT113.B_ALARM
1:0214	ALARM.EVENT114.B_ALARM
1:0215	ALARM.EVENT115.B_ALARM
1:0216	FALSE
1:0217	FALSE
1:0218	FALSE

Shutdown came from Master GAP Begins Master Events List 1:0219 CNFG BI 04.EVENT119.B ALARM 1:0220 CNFG BI 05.EVENT120.B ALARM 1:0221 CNFG BI 06.EVENT121.B ALARM 1:0222 CNFG_BI_07.EVENT122.B_ALARM 1:0223 CNFG BI 08.EVENT123.B ALARM 1:0224 CNFG_BI_09.EVENT124.B_ALARM 1:0225 CNFG_BI_10.EVENT125.B_ALARM 1:0226 CNFG BI 11.EVENT126.B ALARM 1:0227 CNFG_BI_12.EVENT127.B_ALARM 1:0228 CNFG BI 13.EVENT128.B ALARM 1:0229 CNFG BI 14.EVENT129.B ALARM 1:0230 CNFG BI 15.EVENT130.B ALARM 1:0231 CNFG_BI_16.EVENT131.B_ALARM 1:0232 CNFG BI 17.EVENT132.B ALARM 1:0233 CNFG_BI_18.EVENT133.B_ALARM 1:0234 CNFG BI 19.EVENT134.B ALARM 1:0235 CNFG_BI_20.EVENT135.B_ALARM 1:0236 CNFG_BI_21.EVENT136.B_ALARM 1:0237 CNFG BI 22.EVENT137.B ALARM 1:0238 CNFG BI 23.EVENT138.B ALARM 1:0239 CNFG BI 24.EVENT139.B ALARM 1:0240 ALARM.EVENT140.B ALARM 1:0241 ALARM.EVENT141.B ALARM 1:0242 ALARM.EVENT142.B_ALARM 1:0243 ALARM.EVENT143.B ALARM 1:0244 ALARM.EVENT144.B_ALARM 1:0245 ALARM.EVENT145.B ALARM 1:0246 ALARM.EVENT146.B ALARM 1:0247 ALARM.EVENT147.B ALARM 1:0248 ALARM.EVENT148.B ALARM 1:0249 ALARM.EVENT149.B_ALARM 1:0250 ALARM.EVENT150.B ALARM 1:0251 ALARM.EVENT151.B_ALARM 1:0252 ALARM.EVENT152.B ALARM 1:0253 ALARM.EVENT153.B ALARM 1:0254 ALARM.EVENT154.B ALARM 1:0255 ALARM.EVENT155.B ALARM 1:0256 ALARM.EVENT156.B ALARM 1:0257 ALARM.EVENT157.B ALARM 1:0258 ALARM.EVENT158.B_ALARM 1:0259 ALARM.EVENT159.B_ALARM 1:0260 ALARM.EVENT160.B_ALARM 1:0261 ALARM.EVENT161.B ALARM 1:0262 ALARM.EVENT162.B ALARM 1:0263 ALARM.EVENT163.B ALARM 1:0264 ALARM.EVENT164.B ALARM 1:0265 ALARM.EVENT165.B ALARM 1:0266 ALARM.EVENT166.B ALARM 1:0267 ALARM.EVENT167.B ALARM 1:0268 ALARM.EVENT168.B_ALARM

1:0269 ALARM.EVENT169.B ALARM 1:0270 ALARM.EVENT170.B ALARM 1:0271 ALARM.EVENT171.B ALARM 1:0272 ALARM.EVENT172.B_ALARM 1:0273 ALARM.EVENT173.B ALARM 1:0274 ALARM.EVENT174.B_ALARM 1:0275 ALARM.EVENT175.B_ALARM 1:0276 ALARM.EVENT176.B ALARM 1:0277 ALARM.EVENT177.B_ALARM 1:0278 ALARM.EVENT178.B ALARM 1:0279 ALARM.EVENT179.B ALARM 1:0280 ALARM.EVENT180.B ALARM 1:0281 ALARM.EVENT181.B_ALARM 1:0282 ALARM.EVENT182.B ALARM 1:0283 ALARM.EVENT183.B_ALARM 1:0284 ALARM.EVENT184.B ALARM 1:0285 ALARM.EVENT185.B ALARM 1:0286 ALARM.EVENT186.B_ALARM 1:0287 ALARM.EVENT187.B ALARM 1:0288 ALARM.EVENT188.B ALARM 1:0289 ALARM.EVENT189.B ALARM 1:0290 ALARM.EVENT190.B_ALARM 1:0291 ALARM.EVENT191.B ALARM 1:0292 ALARM.EVENT192.B_ALARM 1:0293 ALARM.EVENT193.B ALARM 1:0294 ALARM.EVENT194.B_ALARM 1:0295 ALARM.EVENT195.B ALARM 1:0296 ALARM.EVENT196.B ALARM 1:0297 ALARM.EVENT197.B_ALARM 1:0298 ALARM.EVENT198.B ALARM 1:0299 ALARM.EVENT199.B_ALARM 1:0300 ALARM.EVENT200.B ALARM 1:0301 ALARM.EVENT201.B_ALARM 1:0302 ALARM.EVENT202.B ALARM 1:0303 ALARM.EVENT203.B_ALARM 1:0304 ALARM.EVENT204.B ALARM 1:0305 ALARM.EVENT205.B ALARM 1:0306 ALARM.EVENT206.B ALARM 1:0307 ALARM.EVENT207.B ALARM 1:0308 ALARM.EVENT208.B_ALARM 1:0309 ALARM.EVENT209.B_ALARM 1:0310 ALARM.EVENT210.B_ALARM 1:0311 ALARM.EVENT211.B ALARM 1:0312 ALARM.EVENT212.B_ALARM 1:0313 ALARM.EVENT213.B ALARM 1:0314 ALARM.EVENT214.B ALARM 1:0315 ALARM.EVENT215.B ALARM 1:0316 ALARM.EVENT216.B_ALARM 1:0317 ALARM.EVENT217.B_ALARM 1:0318 ALARM.EVENT218.B_ALARM

1:0319 ALARM.EVENT219.B ALARM 1:0320 ALARM.EVENT220.B ALARM 1:0321 ALARM.EVENT221.B ALARM 1:0322 ALARM.EVENT222.B_ALARM 1:0323 ALARM.EVENT223.B ALARM 1:0324 ALARM.EVENT224.B_ALARM 1:0325 ALARM.EVENT225.B_ALARM 1:0326 ALARM.EVENT226.B ALARM 1:0327 ALARM.EVENT227.B_ALARM 1:0328 ALARM.EVENT228.B ALARM 1:0329 ALARM.EVENT229.B ALARM 1:0330 ALARM.EVENT230.B ALARM 1:0331 ALARM.EVENT231.B_ALARM 1:0332 ALARM.EVENT232.B ALARM 1:0333 ALARM.EVENT233.B_ALARM 1:0334 ALARM.EVENT234.B ALARM 1:0335 ALARM.EVENT235.B ALARM 1:0336 ALARM.EVENT236.B_ALARM 1:0337 ALARM.EVENT237.B ALARM 1:0338 ALARM.EVENT238.B ALARM 1:0339 ALARM.EVENT239.B ALARM 1:0340 ALARM.EVENT240.B_ALARM 1:0341 ALARM.EVENT241.B ALARM 1:0342 ALARM.EVENT242.B_ALARM 1:0343 ALARM.EVENT243.B ALARM 1:0344 ALARM.EVENT244.B_ALARM 1:0345 ALARM.EVENT245.B ALARM 1:0346 ALARM.EVENT246.B ALARM 1:0347 ALARM.EVENT247.B ALARM 1:0348 ALARM.EVENT248.B ALARM 1:0349 ALARM.EVENT249.B_ALARM 1:0350 ALARM.EVENT250.B ALARM 1:0351 CNFG_AI01.EVENT251.B_ALARM 1:0352 CNFG AI02.EVENT252.B ALARM 1:0353 CNFG_AI03.EVENT253.B_ALARM 1:0354 CNFG AI04.EVENT254.B ALARM 1:0355 CNFG AI05.EVENT255.B ALARM 1:0356 CNFG AI06.EVENT256.B ALARM 1:0357 CNFG_AI07.EVENT257.B_ALARM 1:0358 CNFG_AI08.EVENT258.B_ALARM 1:0359 CNFG_AI09.EVENT259.B_ALARM 1:0360 CNFG_AI10.EVENT260.B_ALARM 1:0361 CNFG AI11.EVENT261.B ALARM 1:0362 CNFG_AI12.EVENT262.B_ALARM 1:0363 CNFG AI13.EVENT263.B ALARM 1:0364 CNFG AI14.EVENT264.B ALARM 1:0365 CNFG AI15.EVENT265.B ALARM 1:0366 CNFG_AI16.EVENT266.B_ALARM 1:0367 1:0368

1:0369 1:0370

Analog Reads (RPTar)

Addr	Input	Description
	Input CORE AVAL.ACCEL OUT.A NAME	Description ACCEL CONTROL
	CORE_AVAL.DECEL_OUT.A_NAME	
	CORE_AVAL.START_CTRL.A_NAME	
	DISPLAY.CDPHSS.A_SW	CDP HIGH SIGNAL SELECT
	CORE_AVAL.GAS_DMD.A_NAME	GAS VALVE DEMAND
	CORE_AVAL.LIQ_DMD.A_NAME	
	CORE_AVAL.VLV_DMND.A_NAME	
	DISPLAY.EGT_AVG.A_SW	EGT AVERAGE
	CORE_AVAL.EGT_PID.A_NAME	EGT CONTROL
	DISPLAY.EGT_SPRD.A_SW	EGT SPREAD
	CORE_AVAL.EGTDRV_PID.A_NAME	EGT DERIVATIVE PID
	MP.AUX1_PID.PID_2	Aux 1 PID (from LL)
	MP.AUX2_PID.PID_2	Aux 2 PID (from LL)
	MP.AUX3_PID.PID_2	Aux 3 PID (from LL)
	CORE_AVAL.ACCEL_PID.A_NAME	ACCEL SPEED DERIV PID CONTROL
	CORE_AVAL.MW_LIM.A_NAME	MAX MW CONTROL LIMIT
	CORE_AVAL.V_REFERNC.A_NAME	Voltage Reference Setpoint
3:0018	SYNC_SEQ.MODE_AVAL.OUT_1	Synchronizer Mode
3:0019		
3:0020		
	DISPLAY.SPD_MONITR.HSS_BUS	Display (Monitor) Speed
	CORE_AVAL.SPD_HSS.A_NAME	SPEED HIGH SIGNAL SELECT
	CORE_AVAL.SPD_PID.A_NAME	SPEED CONTROL
	CORE_AVAL.SPD_REF.A_NAME	SPEED REFERENCE
	LL.EXT_SPDREF.A_NAME	LL SPEED REFERENCE
3:0026		
	ALM_SUM.FIRST_OUT.A_MUX_N_1	First Alarm to set Latch (#)
	SD_SUM.FIRSTOUTOB.A_MUX_N_1	First SOFT SD to set Latch (#)
	SD_SUM.FIRST_OUT.A_MUX_N_1	First HARD SD to set Latch (#)
	DISPLAY.EGT_REF.A_SW	EGT REFERENCE
	CORE_AVAL.LSS_BUS.A_NAME	Fuel Demand LSS Bus 1
	CORE_AVAL.HSS.A_NAME	Fuel Demand HSS Bus
	CORE_AVAL.LSS_2.A_NAME	Fuel Demand LSS Bus 2
	DISPLAY.AMBTEMPANY.A_SW	Ambient Inlet Temp (Any type)
3:0035	· _ ·	Turbine MW Load (Snsr or Calc)
3:0036		Turbine Gen MVAR output
	A2_PS_OUTG.GEN_KVA.A_NAME	Turbine Gen MVA output
3:0038		Fuel Decel Limit Curve (vs CDP)
3:0039		Fuel Accel Limit Curve (vs CDP)
3:0040		Turbine Number of Fired Starts
	NV_MEM.LOG.OUT_2	Turbine Start Attempts
	NV_MEM.LOG.OUT_3	Turbine CORE Shutdowns (accumulated)
	NV_MEM.LOG.OUT_4	Turbine Run Hours (accumulated)
3:0044	NV_MEM.LOG.OUT_5	

Woodward

Multip ier

3:0045 NV MEM.LOG.OUT 6 3:0046 NV MEM.LOG.OUT 7 3:0047 NV MEM.LOG.OUT 8 3:0048 NV_MEM.LOG.OUT_9 3:0049 NV MEM.LOG.OUT 10 3:0050 NV_MEM.LOG.OUT_11 3:0051 NV_MEM.LOG.OUT_12 3:0052 NV_MEM.LOG.OUT_13 3:0053 NV_MEM.LOG.OUT_14 3:0054 NV MEM.LOG.OUT 15 3:0055 NV_MEM.LOG.OUT_16 3:0056 NV MEM.LOG.OUT 17 3:0057 NV_MEM.LOG.OUT_18 3:0058 NV MEM.LOG.OUT 19 3:0059 NV_MEM.LOG.OUT_20 3:0060 thru 3:0098 3:0099 3:0100 3:0101 A01 CPU.DSS 01.MONITOR 3:0102 A01_CPU.DSS_02.MONITOR 3:0103 A01_CPU.AI_01.AI_420_ATL 3:0104 A01_CPU.AI_02.AI_420_ATL 3:0105 A01 CPU.AI 03.AI 420 ATL 3:0106 A01_CPU.AI_04.AI_420_ATL 3:0107 A01 CPU.AI 05.AI 420 ATL 3:0108 A01 CPU.AI 06.AI 420 ATL 3:0109 A01_CPU.AO_01.DISPLAY 3:0110 A01_CPU.AO_02.DISPLAY 3:0111 A01_CPU.AO_03.DISPLAY 3:0112 A01_CPU.AO_04.DISPLAY 3:0113 0 3:0114 0 3:0115 A01_CPU.ACT_01.ACT_ATL 3:0116 A01 CPU.ACT 02.ACT ATL 3:0117 A04_COMBO.DSS_03.TSS_ATL 3:0118 A04 COMBO.DSS 04.TSS ATL 3:0119 DISPLAY.TC01.A SW 3:0120 DISPLAY.TC02.A_SW 3:0121 DISPLAY.TC03.A_SW 3:0122 DISPLAY.TC04.A_SW 3:0123 DISPLAY.TC05.A SW 3:0124 DISPLAY.TC06.A_SW 3:0125 DISPLAY.TC07.A SW 3:0126 DISPLAY.TC08.A SW 3:0127 DISPLAY.TC09.A SW 3:0128 DISPLAY.TC10.A_SW 3:0129 A04_COMBO.AI_07.AI_420_ATL 3:0130 A04_COMBO.AI_08.AI_420_ATL

*** Atlas H/W Analog Signals *** SPEED PROBE A SPEED PROBE B PROCESS CONTROL INPUT REMOTE SPEED REF SETTING REM PROCESS CONTROL SETPOINT AMBIENT TURB INLET TEMP (4-20mA) **REM VAR/PF REFERENCE** EGT TEMP SUMMARY (if 4-20mA used) AO #1 READOUT AO #2 READOUT AO #3 READOUT AO #4 READOUT AO #5 READOUT AO #6 READOUT GAS FUEL VALVE DMD (ACT #1) LIQUID FUEL VALVE DMD (ACT #2) SPEED PROBE C SPEED PROBE D EGT T/C #1 EGT T/C #2 EGT T/C #3 EGT T/C #4 EGT T/C #5 EGT T/C #6 EGT T/C #7 EGT T/C #8 EGT T/C #9 EGT T/C #10 CDP SENSOR A (4-20 mA) REM MW REF SETPOINT

GTC190A Gas Turbine Control/Generator Applications

3:0131 A04 COMBO.AI 09.AI 420 ATL 3:0132 A04 COMBO.AI 10.AI 420 ATL 3:0133 A04 COMBO.AI 11.AI 420 ATL 3:0134 DISPLAY.CJ01.A SW 3:0135 A04 COMBO.AO 07.DISPLAY 3:0136 A04_COMBO.AO_08.DISPLAY 3:0137 A05_COMBO.DSS_05.TSS_ATL 3:0138 A05 COMBO.DSS 06.TSS ATL 3:0139 DISPLAY.TC11.A SW 3:0140 DISPLAY.TC12.A SW 3:0141 DISPLAY.TC13.A SW 3:0142 DISPLAY.TC14.A SW 3:0143 DISPLAY.TC15.A_SW 3:0144 DISPLAY.TC16.A SW 3:0145 DISPLAY.TC17.A_SW 3:0146 DISPLAY.TC18.A SW 3:0147 DISPLAY.TC19.A SW 3:0148 DISPLAY.TC20.A_SW 3:0149 A05 COMBO.AI 12.AI 420 ATL 3:0150 A05_COMBO.AI_13.AI_420_ATL 3:0151 A05 COMBO.AI 14.AI 420 ATL 3:0152 A05_COMBO.AI_15.AI_420_ATL 3:0153 A05 COMBO.AI 16.AI 420 ATL 3:0154 DISPLAY.CJ02.A_SW 3:0155 A05 COMBO.AO 09.DISPLAY 3:0156 A05_COMBO.AO_10.DISPLAY 3:0157 A03 PSENSE.SPDBIAS RO.A SW 3:0158 A03 PSENSE.VOLTBIASRO.A SW 3:0159 A2_PS_OUTG.PT_A_GEN.A_NAME 3:0160 A2_PS_OUTG.PT_B_GEN.A_NAME 3:0161 A2_PS_OUTG.PT_C_GEN.A_NAME 3:0162 A2_PS_OUTG.PT_GEN_AVG.A_NAME 3:0163 A2_PS_OUTG.CT_A_GEN.A_NAME 3:0164 A2 PS OUTG.CT B GEN.A NAME 3:0165 A2_PS_OUTG.CT_C_GEN.A_NAME 3:0166 A2 PS OUTG.CT GEN AVG.A NAME 3:0167 A2 PS OUTG.GEN PWR A.A NAME 3:0168 A2 PS OUTG.GEN PWR B.A NAME 3:0169 A2 PS OUTG.GEN PWR C.A NAME 3:0170 A2_PS_OUTG.GEN_MWATTS.A_NAME 3:0171 A2_PS_OUTG.GEN_VA_A.A_NAME 3:0172 A2_PS_OUTG.GEN_VA_B.A_NAME 3:0173 A2 PS OUTG.GEN VA C.A NAME 3:0174 A2_PS_OUTG.GEN_KVA.A_NAME 3:0175 A2 PS OUTG.GEN VAR A.A NAME 3:0176 A2 PS OUTG.GEN VAR B.A NAME 3:0177 A2 PS OUTG.GEN VAR C.A NAME 3:0178 A2_PS_OUTG.GEN_KVAR.A_NAME 3:0179 A2 PS OUTG.GEN NPHV.A NAME 3:0180 A2_PS_OUTG.GEN_NPHA.A_NAME

P1 GAS INLET PRESSURE P2 GAS PRESSURE A P2 GAS PRESSURE B T/C COLD JUNCTION SENSOR AO #7 READOUT AO #8 READOUT CUSTOMER FREQUENCY A CUSTOMER FREQUENCY B EGT T/C #11 EGT T/C #12 EGT T/C #13 EGT T/C #14 EGT T/C #15 EGT T/C #16 EGT T/C #17 EGT T/C #18 EGT T/C #19 EGT T/C #20 CDP SENSOR B (4-20 mA) FLAME DETECTOR A INPUT FLAME DETECTOR B INPUT FLAME DETECTOR C INPUT FLAME DETECTOR D INPUT T/C COLD JUNCTION SENSOR AO #9 READOUT AO #10 READOUT Speed Bias Output Voltage Bias Output

3:0181 A2 PS OUTB.PT A BUS.A NAME 3:0182 A2_PS_OUTB.PT_B_BUS.A_NAME 3:0183 A2_PS_OUTB.PT_C_BUS.A_NAME 3:0184 A2_PS_OUTB.PT_BUS_AVG.A_NAME 3:0185 A2_PS_OUTB.CT_A_BUS.A_NAME 3:0186 A2_PS_OUTB.CT_B_BUS.A_NAME 3:0187 A2_PS_OUTB.CT_C_BUS.A_NAME 3:0188 A2_PS_OUTB.CT_BUS_AVG.A_NAME 3:0189 A2_PS_OUTB.BUS_PWR_A.A_NAME 3:0190 A2 PS OUTB.BUS PWR B.A NAME 3:0191 A2_PS_OUTB.BUS_PWR_C.A_NAME 3:0192 A2_PS_OUTB.BUS_WATTS.A_NAME 3:0193 A2_PS_OUTB.BUS_VA_A.A_NAME 3:0194 A2_PS_OUTB.BUS_VA_B.A_NAME 3:0195 A2_PS_OUTB.BUS_VA_C.A_NAME 3:0196 A2_PS_OUTB.BUS_VA.A_NAME 3:0197 A2_PS_OUTB.BUS_VAR_A.A_NAME 3:0198 A2_PS_OUTB.BUS_VAR_B.A_NAME 3:0199 A2 PS OUTB.BUS VAR C.A NAME 3:0200 A2_PS_OUTB.BUS_VAR.A_NAME 3:0201 A2 PS OUTB.BUS NPHV.A NAME 3:0202 A2_PS_OUTB.BUS_NPHA.A_NAME 3:0203 3:0204 3:0205 3:0206 3:0207 3:0208 3:0209 3:0210 3:0211 3:0212 3:0213 3:0214 3:0215 3:0216 3:0217 3:0218 3:0219 3:0220 3:0221 3:0222 3:0223 3:0224 3:0225 3:0226 3:0227 3:0228 3:0229

Bus Total VAR

3:0230

Manual 26432	GTC190A Gas Turbine Control/Generator Applications
3:0231	
3:0232	
3:0233	
3:0234	
3:0235	
3:0236	
3:0237	
3:0238	
3:0239	
3:0240	
3:0241	
3:0242	
3:0243	
3:0244	
3:0245	
3:0246	
3:0247	
3:0248	
3:0249	* Start LL accessible inputs at 250 *
3:0250 *0.0 (-32000.0, 32000.0	0) *1
Analog Writes (RPTaw)	
	M
Addr	Description lie
4:0001	Analog Out #1 Force
4:0002	Analog Out #2 Force
4:0003	Analog Out #3 Force
4:0004	Analog Out #4 Force
4:0005	Analog Out #5 Force
4:0006	Analog Out #6 Force
4:0007	Analog Out #7 Force
4:0008	Analog Out #8 Force
4:0009	Analog Out #9 Force
4:0010	Analog Out #10 Force
4:0011	Actuator Out #1 Force
4:0012	Actuator Out #2 Force
4:0013	Fuel Valve Manual Stroke
4:0014	Customer Dmd1 to AO Mux
4:0015	Customer Dmd2 to AO Mux Customer Dmd3 to AO Mux
4:0016	
4:0017	Customer Dmd4 to AO Mux
4:0018	
4:0019	
4:0020	
thru	
4:0049	
4:0050	

Appendix C. Alarm/Shutdown Event List

When an event occurs, the application sets a numbered Alarm flag (latch) as per the list below. The action to be taken is determined by the configuration option that the user selects for each event. The Quick Service inspector file has a user tunable value for the configuration number as per the chart below. The programmed default actions for these events are shown in the list below. The ACKNOWLEDGE input will turn off the Horn output. The RESET will clear the event latch, if the event condition no longer exists. Event options are as follows:

Configuration Number	Description
1	Disabled (No action taken)
2	Alarm (Audible & Visual annunciation of event)
3	Soft Shutdown (same as Alarm w/ Open Gen Breaker Command
4	Hard Shutdown (same as Soft w/ Fuel Shut-off)
5	Reserved (Ladder Logic defined sequence)

IMPORTANT

Some events are programmed as Hard Shutdowns and are not tunable, such as All Speed Sensors Failed, PT Overspeed, EGT Overtemp, and the Fuel Driver Faults.

EVENTS INITIATED IN THE CORE FUEL CONTROL GAP (5418-2358)

Event #	DESCRIPTION	DEFAULT	, Site Option
AL 001	Shaft Overspeed ALM level	ALARM	
AL_002	Shaft Overspeed SD level	HARD SHUTDOWN	
AL 003	Speed Signal Difference	ALARM	
AL_004	All Shaft Speed Sig Failed	HARD SHUTDOWN	
AL 005	Shaft Overspeed Test Enabled	ALARM	
AL_006	CDP Over High Press Level	Disabled	
AL 007	EGT Signal Low after OVRD	ALARM	
AL_008	EGT Overtemp ALM level	ALARM	
AL 009	EGT Overtemp SD Level	HARD SHUTDOWN	
AL_010	Excessive EGT Spread Alarm	ALARM	
AL 011	Excessive EGT Spread Shutdown	SOFT SHUTDOWN	
AL_012	Excessive # of T/C Failed ALM	ALARM	
AL 013	Excessive # of T/C Failed SD	HARD SHUTDOWN	
AL_014	EGT Signal via Analog Input Failed	Disabled	
AL 015	Single T/C Input for EGT Failed	HARD SHUTDOWN	
AL_016	T/C 01 Difference ALM	ALARM	
AL 017	T/C 02 Difference ALM	ALARM	
AL_018	T/C 03 Difference ALM	ALARM	
AL 019	T/C 04 Difference ALM	ALARM	
AL_020	T/C 05 Difference ALM	ALARM	
AL 021	T/C 06 Difference ALM	ALARM	
AL_022	T/C 07 Difference ALM	ALARM	
AL 023	T/C 08 Difference ALM	ALARM	
AL_024	T/C 09 Difference ALM	ALARM	

AL 025	T/C 10 Difference ALM	ALARM	I
AL 025 AL 026	T/C 11 Difference ALM	ALARM	
AL_026 AL_027	T/C 12 Difference ALM	ALARM	
AL 027 AL 028	T/C 13 Difference ALM	Disabled	
AL_020 AL 029	T/C 14 Difference ALM	Disabled	
AL 030	T/C 15 Difference ALM	Disabled	
AL_030 AL_031	T/C 16 Difference ALM	Disabled	
AL 032	T/C 17 Difference ALM	Disabled	
AL 033	T/C 18 Difference ALM	Disabled	
AL 034	Failure of 3 Adjacent T/C signals	Disabled	
AL 035	Discrete Input Flame Detector Failed	Disabled	
AL 036	Analog Input Flame Detector Failed	Disabled	
AL 037	External (DI) Shutdown input	Disabled	
AL 038	Unit Failed to Reach Rated Speed	Disabled	
AL 039	Starter Engaged - No Speed Detected	ALARM	
AL 040	Turbine Failed to Lite-Off	HARD SHUTDOWN	
AL 041	Loss of Flame in Combustor	HARD SHUTDOWN	
AL 042	Unit Failed to Reach Idle Speed	Disabled	
AL 043		Disabled	
AL 044		Disabled	
AL 045		Disabled	
AL 046		Disabled	
AL 047		Disabled	
AL 048		Disabled	
AL 049		Disabled	
AL 050	Gen Breaker Fdbck Failed	SOFT SHUTDOWN	
AL 051	Gen Breaker Shunt Trip Error	SOFT SHUTDOWN	
AL 052	GEN Negative Phase Current Alarm	ALARM	
AL 053	GEN Negative Phase Current Warning	Disabled	
AL 054	GEN Negative Phase Volt Alarm	ALARM	
AL 055	GEN Negative Phase Volt Warning	Disabled	
AL_056	Gen Over Frequency Alarm	ALARM	
AL 057	Gen Over Frequency Warning	Disabled	
AL 058	Gen Under Frequency Alarm	ALARM	
AL 059	Gen Under Frequency Warning	Disabled	
AL_060	Gen Over Volts Alarm	ALARM	
AL 061	Gen Over Volts Warning	Disabled	
AL_062	Gen Under Volts Alarm	ALARM	
AL 063	Gen Under Volts Warning	Disabled	
AL_064	GEN Over Power Protect Alarm	SOFT SHUTDOWN	
AL 065	GEN Over Power Protect Warning	ALARM	
AL_066	GEN Reverse Power Protect Alarm	SOFT SHUTDOWN	
AL 067	GEN Reverse Power Protect Warning	ALARM	
AL_068	GEN VARS Over Protection Alarm	ALARM	
AL 069	GEN VARS Over Protection Warning	Disabled	
AL_070	GEN VARS Under Protection Alarm	ALARM	
AL 071	GEN VARS Under Protection Warning	Disabled	
AL_072	GEN Phase Differential Current Alarm	ALARM	
AL 073	GEN Phase Differential Current Warning	Disabled	
AL 074	GEN Phase Over Current Alarm	SOFT SHUTDOWN	

1	1	1
AL 075	GEN Phase Over Current Warning	Disabled
AL_076	KVA Switch Active	Disabled
AL 077	Speed / Frequency Mismatch	SOFT SHUTDOWN
AL_078	Phase Rotation Alarm (Sync Inhibit)	SOFT SHUTDOWN
AL 079	Process Value High Alarm	Disabled
AL_080	Process Value Low Alarm	Disabled
AL 081	Voltage Bias Range Alarm	Disabled
AL_082	Unit Failed to Sync	ALARM
AL 083	High Load Alarm	Disabled
AL_084	Low Load Alarm	Disabled
AL 085	Synchronizer Reclose Attempts Exceeded	Disabled
AL_086	Not Used	Disabled
AL 087	Not Used	Disabled
AL_088	Not Used	Disabled
AL 089	Not Used	Disabled
AL_090	Not Used	Disabled
AL 091	Not Used	Disabled
AL_092	Not Used	Disabled
AL 093	Not Used	Disabled
AL_094	Not Used	Disabled
AL 095	Not Used	Disabled
AL_096	Not Used	Disabled
AL 097	Not Used	Disabled
AL_098	Not Used	Disabled
AL 099	Not Used	Disabled
AL_100	SD initiated from Master GAP file	Disabled

EVENTS INITIATED IN THE MASTER GAP (5418-2359)

Event #	DESCRIPTION	DEFAULT	Site Option
AL_101	Atlas HW/OpSys Summary Fault	HARD SHUTDOWN	
AL 102	Atlas Input Power Alarm	ALARM	
AL_103	Atlas HW Hi Temp	ALARM	
AL 104	Control is NOT Configured	HARD SHUTDOWN	
AL_105	Local Modbus Port #1 Fault	ALARM	
AL 106	Local Modbus Port #2 Fault	Disabled	
AL_107	Remote Modbus Port Fault	Disabled	
AL 108	Speed Signal # 1 Failed	ALARM	
AL_109	Speed Signal # 2 Failed	ALARM	
AL 110	Analog Input # 1 Failed	ALARM	
AL_111	Analog Input # 2 Failed	ALARM	
AL 112	Analog Input # 3 Failed	ALARM	
AL_113	Analog Input # 4 Failed	ALARM	
AL 114	Analog Input # 5 Failed	ALARM	
AL_115	Analog Input # 6 Failed	ALARM	
AL 116	External Discrete E-Stop	HARD SHUTDOWN	HARD SHUTDOWN
AL_117	Event Trigger by DI 02	Disabled	
AL 118	Event Trigger by DI 03	Disabled	
AL_119	Event Trigger by DI 04	Disabled	

AL 120	Event Trigger by DI 05	Disabled
AL 121	Event Trigger by DI 06	Disabled
AL 122	Event Trigger by DI 07	Disabled
AL 123	Event Trigger by DI 08	Disabled
AL 124	Event Trigger by DI 09	Disabled
AL 125	Event Trigger by DI 10	Disabled
AL 126	Event Trigger by DI 11	Disabled
AL 127	Event Trigger by DI 12	Disabled
AL 128	Event Trigger by DI 13	Disabled
AL_129	Event Trigger by DI 14	Disabled
AL 130	Event Trigger by DI 15	Disabled
AL_131	Event Trigger by DI 16	Disabled
AL 132	Event Trigger by DI 17	Disabled
AL_133	Event Trigger by DI 18	Disabled
AL 134	Event Trigger by DI 19	Disabled
AL_135	Event Trigger by DI 20	Disabled
AL 136	Event Trigger by DI 21	Disabled
AL_137	Event Trigger by DI 22	Disabled
AL 138	Event Trigger by DI 23	Disabled
AL_139	Event Trigger by DI 24	Disabled
AL 140	Speed Signal # 3 Failed	Disabled
AL_141	Speed Signal # 4 Failed	Disabled
AL 142	T/C # 01 Signal Failed	ALARM
AL 143	T/C # 02 Signal Failed	ALARM
AL 144	T/C # 03 Signal Failed	ALARM
AL 145	T/C # 04 Signal Failed	ALARM
AL 146	T/C # 05 Signal Failed	ALARM
AL_147	T/C # 06 Signal Failed	ALARM
AL 148	T/C # 07 Signal Failed	ALARM
AL_149	T/C # 08 Signal Failed	ALARM
AL 150	T/C # 09 Signal Failed	ALARM
AL_151	T/C # 10 Signal Failed	ALARM
AL 152	AI # 07 Signal Failed	ALARM
AL_153	AI # 08 Signal Failed	ALARM
AL 154	AI # 09 Signal Failed	ALARM
AL_155	AI # 10 Signal Failed	ALARM
AL 156	AI # 11 Signal Failed	ALARM
AL_157	T/C # 11 Signal Failed	ALARM
AL 158	T/C # 12 Signal Failed	ALARM
AL_159	T/C # 13 Signal Failed	Disabled
AL 160	T/C # 14 Signal Failed	Disabled
AL_161	T/C # 15 Signal Failed	Disabled
AL 162	T/C # 16 Signal Failed	Disabled
AL_163	T/C # 17 Signal Failed	Disabled
AL 164	T/C # 18 Signal Failed	Disabled
AL_165	T/C # 19 Signal Failed	Disabled
AL 166	T/C # 20 Signal Failed	Disabled
AL_167	Al # 12 Signal Failed	ALARM
AL 168	Al # 13 Signal Failed	ALARM
AL_169	Al # 14 Signal Failed	ALARM

GIU	-190A Gas Turbine Control/Generator Ap	plications	Manual 264
AL 170	Al # 15 Signal Failed	ALARM	
AL_171	AI # 16 Signal Failed	ALARM	
AL 172	Speed Signal #05 Failed	Disabled	
AL 173	Speed Signal #06 Failed	Disabled	
AL 174	CJ Comp Sensor #1 Failed	ALARM	
AL 175	CJ Comp Sensor #2 Failed	ALARM	
AL 176	GAS Fuel Act Failed (Act/SPC/GS)	HARD SHUTDOWN	
AL 177	GAS Act Failed - Unit running on LIQ	ALARM	
AL 178	LIQ Fuel Act Failed (Act/SPC/GS)	HARD SHUTDOWN	
AL_179	LIQ Act Failed - Unit running on Gas	ALARM	
AL 180	SmartCore CPU A5200 Module Fault	ALARM	
AL 181	PowerSense Module Fault	ALARM	
AL 182	Analog Combo #1 Module Fault	ALARM	
AL_183	Analog Combo #2 Module Fault	ALARM	
AL 184	Amb Temp Input Failed	ALARM	
AL 185	SPC 1 Driver Summary Fault	Disabled	
AL 186	Reserved - SPC 1 Status Fault	Disabled	
AL_187	Reserved - SPC 1 Communication Fault	Disabled	
AL 188	Reserved - SPC 1 Feedback #1 Fault	Disabled	
AL 189	Reserved - SPC 1 Feedback #2 Fault	Disabled	
AL 190	Reserved - SPC 1 Analog Backup Failed	Disabled	
AL_191	Reserved - SPC 2 Driver Fault	Disabled	
AL 192	Reserved - SPC 2 Status Fault	Disabled	
AL 193	Reserved - SPC 2 Communication Fault	Disabled	
AL 194	Reserved - SPC 2 Feedback #1 Fault	Disabled	
AL_195	Reserved - SPC 2 Feedback #2 Fault	Disabled	
AL 196	Reserved - SPC 2 Analog Backup Failed	Disabled	
AL 197	Reserved - SPC 3 Driver Fault	Disabled	
AL 198	Reserved - SPC 3 Status Fault	Disabled	
AL 199	Reserved - SPC 3 Communication Fault	Disabled	
AL 200	Reserved - SPC 3 Feedback #1 Fault	Disabled	
AL 201	Reserved - SPC 3 Feedback #2 Fault	Disabled	
AL 202	Reserved - SPC 3 Analog Backup Failed	Disabled	
AL 203	Reserved - SPC 4 Driver Fault	Disabled	
AL 204	Reserved - SPC 4 Status Fault	Disabled	
AL 205	Reserved - SPC 4 Communication Fault	Disabled	
AL 206	Reserved - SPC 4 Feedback #1 Fault	Disabled	
AL 207	Reserved - SPC 4 Feedback #2 Fault	Disabled	
AL 208	Reserved - SPC 4 Analog Backup Failed	Disabled	
AL 209	Reserved GS Valve 1 Communication Fault	Disabled	
AL 210	Reserved GS Valve 1 System SD	Disabled	
AL 211	Reserved GS Valve 1 Position SD	Disabled	
AL 212	Mismatch of Selected Fuel and Active Fuel	Disabled	
AL 213	Not Used	Disabled	
AL 214	Not Used	Disabled	
AL_215	Not Used	Disabled	
AL 216	Not Used	Disabled	
AL_217	Not Used	Disabled	
AL 218	Not Used	Disabled	
AL_219	Not Used	Disabled	
·			

AL 220	Not Used	Disabled
AL 221	Not Used	Disabled
AL 222	Not Used	Disabled
AL 223	Not Used	Disabled
AL 224	Not Used	Disabled
AL_225	Not Used	Disabled
AL 226	Not Used	Disabled
AL_227	Not Used	Disabled
AL 228	Not Used	Disabled
AL_229	Not Used	Disabled
AL 230	Not Used	Disabled
AL_231	Not Used	Disabled
AL 232	Not Used	Disabled
AL_233	Not Used	Disabled
AL 234	Not Used	Disabled
AL_235	Not Used	Disabled
AL 236	Not Used	Disabled
AL_237	Not Used	Disabled
AL 238	Not Used	Disabled
AL_239	Not Used	Disabled
AL 240	Not Used	Disabled
AL_241	Not Used	Disabled
AL 242	Not Used	Disabled
AL_243	Not Used	Disabled
AL 244	Not Used	Disabled
AL_245	Not Used	Disabled
AL 246	Not Used	Disabled
AL_247	Not Used	Disabled
AL 248	Not Used	Disabled
AL_249	Not Used	Disabled
AL 250	Not Used	Disabled

** There are additional Latch blocks that can be used to capture Alarm and Shutdown events triggered from Ladder Logic logic.

Appendix D. Configuration and Service Tunables Worksheet

Control Part Number

Software Number & Revision Letter

Control Serial Number

I/O CONFIGURATION NOTES

MPUs:

MPUs: Maximum frequency sensing = 25000 Hz Single or up to 4 Redundant Sensors

TEMPERATURE INPUT (summary input):

EGT: input in Deg. F, 4-20mA – Required on Analog Input Channel # 6 if not T/C's

COMPRESSOR DISCHARGE PRESSURE INPUT: CDP: input in psia, 4-20mA – If used must be on Analog Input Channel # 7

SERVICE & CONFIGURATION HEADER NOTES:

Below is a list of the Quickservice Inspector File that is used to configure the control. Each Tab sheet is listed below with a column available for the user to record the correct value for their unit.

The column identify by the T * indicates that rows value as tunable.

Configure Sheets

The following section outlines optional configurations that can be adjusted in this standard control. These should be checked at the site to be sure they are correct for the turbine being controlled. The default value and range are shown for each tunable. The turbine must be shutdown to adjust the tunables in Configure mode, as it will place the control in IO LOCK.

** LIST OF CONFIGURE SHEET TAB HEADERS **

** CONFIGURE: C1- A - SYSTEM **

** CONFIGURE: C2- B - Psense SETTINGS**

** CONFIGURE: C3- C - SPEED SENSOR SETTINGS**

** CONFIGURE: C4- D - ANALOG IN OPTS (4=MAX)**

- ** CONFIGURE: C5- E EGT TYPE**
- ** CONFIGURE: C6- F EGT SETTINGS**

Configure: A - SYSTEM

Category	Field Name		Value	Low	High	User Value
Configure	01 Use Gas Fuel Valve	*	TRUE			
Configure	02 Gas Valve Reverse Act?	*	FALSE			

GTC190A Gas Turbine Control/Generator Applications

Configure	03 Use Liq Fuel Valve	*	TRUE		
Configure	04 Liq Valve Reverse Act?	*	FALSE		
Configure	05 PT Idle Speed Ref (Min)	*	2250	100	20000
Configure	06 PT Rated Speed	*	3600	100	20000
Configure	07 PT Max Spd Ref Setpoint	*	3780	1000	30000
Configure	08 PT Speed for SD Reset	*	500	100	30000
Configure	09 Flame Detect Options	*	1	1	3
Configure	10 Flame Detect Option Fdbk		EGT > 400 Deg F		
Configure	11 Num of Flame Detectors	*	2	1	4
Configure	12 Num FlamDet Requrd	*	1	1	4
Configure	13 Disable CDP Sensor	*	FALSE		
Configure	14 Fuel Transfer Rate (sec)	*	60	10	120
Configure	15 Gen Freq (1=50, 2=60) HZ	*	2	1	2
Configure	16 Use Sync/Breaker Cmds?	*	TRUE		
Configure	17 Init Mode at Brkr Close	*	0	0	2
Configure	18 Initial Mode Selected		Manual Loading		
Configure	19 Use Load Sharing by LON?	*	FALSE		
Configure	20 Use Reactive Load Cntrl?	*	TRUE		
Configure	21 Display Temps in Deg C	*	FALSE		
Configure	22 SD BO True=SD	*	TRUE		
Configure	23 ALM Out Summary or Horn	*	FALSE		
Configure	24 Tune True= CNFGComplete	*	FALSE		

Configure: B - PSense SETTINGS

						User
Category	Field Name		Value	Low	High	Value
Configure	01 GEN CT Ratio	*	150	5	30000	
Configure	02 GEN PT Ratio	*	5	1	1000	
Configure	03 GEN Sensing Type T=3 Phz	*	TRUE			
Configure	04 GEN H/W Volt(70/120/240)	*	2	1	3	
Configure	05 Mains CT Ratio	*	150	5	30000	
Configure	06 Mains PT Ratio	*	5	1	1000	
Configure	07 Mains Sensing Type (T=3)	*	TRUE			
Configure	08 Mains H/W VIt 70/120/240	*	2	1	3	
Configure	09 Num of Poles in GEN	*	2	2	18	
Configure	10 Rated GEN KVA	*	125	1	300	
Configure	11 Rated GEN KVAR	*	25	0.1	300	
Configure	12 Rated GEN KW	*	50	0.1	300	
Configure	13 Rated GEN Volt	*	480	0.001	30000	
Configure	14 GEN Line Config 1=Delta	*	1	1	2	
Configure	15 GEN Rotation (T=ABC)	*	TRUE			
Configure	16 Rated Mains KVA	*	1000	10	30000	
Configure	17 Rated Mains KVAR	*	1000	0.001	30000	
Configure	18 Rated Mains KW	*	10000	0.001	30000	
Configure	19 Rated Mains Volts	*	480	0.001	30000	
Configure	20 Mains Line Config (2=Y)	*	1	1	2	
Configure	21 Voltage Bias Type	*	3	1	5	
Configure	22 Voltage Bias Selected		+/- 3 Volt			
Configure	23 LON Unit Number	*	1	1	16	

Configure: C - SPEED SENSOR SETTINGS

						User
Category	Field Name		Value	Low	High	Value
Configure	01 Number of Sensors	*	1	1	4	
Configure	02 Max Shaft Speed	*	5000	0	30000	
Configure	03 Speed Gear Ratio	*	1	0.01	100	
Configure	04 Number of Gear Teeth	*	83	1	1000	
Configure	05 Spd Failed High Setpoint	*	5000	0	30000	
Configure	06 Spd Failed Low Setpoint	*	300	0	30000	
Configure	07 Snsr Spread Alarm Level	*	1000	0	30000	
Configure	08 Hi Speed Alarm Setpnt	*	4000	100	10000	
Configure	09 Overspeed SD Setpoint	*	4000	100	10000	

Configure: D - ANALOG IN OPTS

oonngaro.						User
Category	Field Name		Value	Low	High	Value
Configure	00 Tune Value to 1 to Use		Function Shown			
Configure	01 Process Control Signal	*	1	0	2	
Configure	02 Remote PT Speed REF	*	1	0	2	
Configure	03 Remote Process Setpoint	*	1	0	2	
Configure	04 Amb Inlet Air Temp	*	1	0	2	
Configure	05 Remote VAR/PF REF	*	1	0	2	
Configure	06 EGT as a Summary Al	*	1	0	2	
Configure	07 CDP Sensor A	*	1	0	2	
Configure	08 Remote MW Setpoint	*	0	0	2	
Configure	09 P1 Gas Pressure Sensor	*	0	0	2	
Configure	10 P2 Gas Pressure Sensor A	*	0	0	2	
Configure	11 P2 Gas Pressure Sensor B	*	0	0	2	
Configure	12 CDP Sensor B	*	0	0	2	
Configure	13 Analog Flame Detector 1	*	1	0	2	
Configure	14 Analog Flame Detector 2	*	1	0	2	
Configure	15 Analog Flame Detector 3	*	1	0	2	
Configure	16 Analog Flame Detector 4	*	1	0	2	

Configure: E - EGT TYPE

Category	Field Name		Value	Low	High	User Value
Configure	01 EGT Configuration	*	3	1	3	
Configure	02 EGT Selected Input		Individual T/C			
Configure	03 Use EGT TC01	*	TRUE			
Configure	04 Use EGT TC02	*	TRUE			
Configure	05 Use EGT TC03	*	TRUE			
Configure	06 Use EGT TC04	*	TRUE			
Configure	07 Use EGT TC05	*	TRUE			
Configure	08 Use EGT TC06	*	TRUE			
Configure	09 Use EGT TC07	*	TRUE			
Configure	10 Use EGT TC08	*	TRUE			
Configure	11 Use EGT TC09	*	TRUE			
Configure	12 Use EGT TC10	*	TRUE			

GTC190A Gas Turbine Control/Generator Applications

Configure	13 Use EGT TC11	*	TRUE		
Configure	14 Use EGT TC12	*	TRUE		
Configure	15 Use EGT TC13	*	FALSE		
Configure	16 Use EGT TC14	*	FALSE		
Configure	17 Use EGT TC15	*	FALSE		
Configure	18 Use EGT TC16	*	FALSE		
Configure	19 Use EGT TC17	*	FALSE		
Configure	20 Use EGT TC18	*	FALSE		

Configure: F - EGT SETTINGS

						User
Category	Field Name		Value	Low	High	Value
Configure	01 EGT Low Temp Setpnt	*	500	-100	2500	
Configure	02 EGT Overtemp Alm Setpnt	*	1600	0	2500	
Configure	03 EGT Overtemp SD Setpnt	*	1650	0	2500	
Configure	04 Number of T/C Used	*	8	0	18	
Configure	05 ALM/SD if 3 Adj T/C Fail	*	TRUE			
Configure	06 Trip if # of T/C Failed	*	5	0	18	
Configure	07 Trip is T/C Spread is GT	*	400	0	5000	
Configure	08 T/C Mon block Low Delta	*	200	50	2000	
Configure	09 T/C Mon block High Delta	*	200	50	2000	

Service Sheets

The following section outlines Optional configurations that can be adjusted in this standard control. These should be checked at the site to be sure they are correct for the turbine being controlled. The default value and range are shown for each tunable. In Service mode, these are values that can be adjusted without shutting down the turbine, however, caution should always be used when making on-line adjustments.

***** ** LIST OF SERVICE SHEET TAB HEADERS ** ***** ** SERVICE: S01 AI 1 Setup ** ** SERVICE: S02 AI 2 Setup ** ** SERVICE: S03 AI 3 Setup ** ** SERVICE: S04 AI 4 Setup ** ** SERVICE: S05 AI 5 Setup ** ** SERVICE: S06 AI 6 Setup ** ** SERVICE: S07 AI 7 Setup ** ** SERVICE: S08 AI 8 Setup ** ** SERVICE: S09 AI 9 Setup ** ** SERVICE: S10 AI 10 Setup ** ** SERVICE: S11 AI 11 Setup ** ** SERVICE: S12 AI 12 Setup ** ** SERVICE: S13 AI 13 Setup ** ** SERVICE: S14 AI 14 Setup ** ** SERVICE: S15 AI 15 Setup ** ** SERVICE: S16 AI 16 Setup ** ** SERVICE: S17 T/C 1-7 Setup ** ** SERVICE: S18 T/C 8-14 Setup ** ** SERVICE: S19 T/C 15-20 Setup ** ** SERVICE: S20 DI 1-6 Setup ** ** SERVICE: S21 DI 7-11 Setup ** ** SERVICE: S22 DI 12-16 Setup ** ** SERVICE: S23 DI 17-21 Setup **

- ** SERVICE: S24 DI 22-24 Setup **
- ** SERVICE: S25 DO 3-7 Setup **
- ** SERVICE: S26 DO 8-12 Setup **
- ** SERVICE: S27 AO 1-4 Setup**
- ** SERVICE: S28 AO 5-8 Setup **
- ** SERVICE: S29 AO 9-10 Setup **
- ** SERVICE: S30 PowerSense Module Setup ** ** SERVICE: S31 Relay Output Forcing **
- ** SERVICE: S32 Analog Output Forcing **
- ** SERVICE: S33 Analog Output Forcing ** ** SERVICE: S34 Valve Calibration & Stroke **
- ** SERVICE: S35 Start / Lite-off Setup **
- ** SERVICE: S36 Start/Stop Sequence **
- ** SERVICE: S37 Remote Speed Reference Setup **
- ** SERVICE: S38 Speed Control Setup **
- ** SERVICE: S39 EGT Control PID Setup **
- ** SERVICE: S40 Real Load Control Setup **
- ** SERVICE: S41 Synchronizer Setup **
- ** SERVICE: S42 Reactive Load Setup **
- ** SERVICE: S43 Process Control Setup **
- ** SERVICE: S44 Generator Protection 1 **
- ** SERVICE: S45 Generator Protection 2 **

Service: S01 AI 1 setup

						User
Category	Field Name	-	Value	Low	High	Value
Service	01 Select Function for AI01		1			
Service	02 Mode =		Process Control Input Signal			
Service	03 1=4-20mA 2=0-5V	*	1	1	2	
Service	04 Mode =		Channel configured as 4-20 mA			
Service	05 Analog 1 Value @ 4 mA =	*	0	-20000	20000	
Service	06 Analog 1 Value @ 20 mA =	*	100	-80000	80000	
Service	07 Analog 1 Value		-0.1			
Service	08 Analog 1 Offset	*	0	-487500	487500	
Service	09 Analog 1 Gain	*	1	0	2	
Service	10 Failed sensor delay time	*	0.1	0	5	
Service	11 Configurd for Custom Sig		FALSE			
Service	12 Custom Use Event Level	*	1000	-15000	15000	
Service	13 Alarm Low=T Hi=F	*	FALSE			
Service	14 Mode =		Alarm on rising signal (High)			
Service	15 1=N_Used 2=Alrm 3=SD	*	1	1	4	
Service	16 Mode =		Disabled			
Service	17 Alarm delay time	*	0.1	0	500	
Service	18 Action on Failed Signal	*	2	1	5	
Service	19 Mode =		Alarm			

Service: S02 AI 2 setup

Category	Field Name	Value	Low	High	User Value
Service	01 Select Function for AI02	1			
Service	02 Mode =	Remote PT Speed Ref			
Service	03 1=4-20mA 2=0-5V	* 1	1	2	

			Channel configured		
Service	04 Mode =		as 4-20 mA		
Service	05 Analog 2 Value @ 4 mA =	*	3600	-20000	20000
Service	06 Analog 2 Value @ 20 mA =	*	3780	-80000	80000
Service	07 Analog 2 Value		3599.88		
Service	08 Analog 2 Offset	*	0	-487500	487500
Service	09 Analog 2 Gain	*	1	0	2
Service	10 Failed sensor delay time	*	0.1	0	5
Service	11 Configurd for Custom Sig		FALSE		
Service	12 Custom Use Event Level	*	1000	-15000	15000
Service	13 Alarm Low=T Hi=F	*	FALSE		
Service	14 Mode =		Alarm on rising signal (High)		
Service	15 1=N Used 2=Alrm 3=SD	*	1	1	4
Service	16 Mode =		Disabled		
Service	17 Alarm delay time	*	0.1	0	500
Service	18 Action on Failed Signal	*	2	1	5
Service	19 Mode =		Alarm		

Service: S03 AI 3 setup

						User
Category	Field Name	T	Initial Val	Low	High	Value
Service	01 Select Function for AI03		1			
			Remote Process			
			Control			
Service	02 Mode =		Setpoint			
Service	03 1=4-20mA 2=0-5V	*	1	1	2	
			Channel			
Service	04 Mode =		configured as 4-20 mA			
Service	05 Analog 3 Value @ 4 mA =	*	0	-20000	20000	
Service	06 Analog 3 Value @ 20 mA =	*	30	-80000	80000	
Service	07 Analog 3 Value		0			
Service	08 Analog 3 Offset	*	0	-487500	487500	
Service	09 Analog 3 Gain	*	1	0	2	
Service	10 Failed sensor delay time	*	0.1	0	5	
Service	11 Configurd for Custom Sig		FALSE			
Service	12 Custom Use Event Level	*	1000	-15000	15000	
Service	13 Alarm Low=T Hi=F	*	FALSE			
			Alarm on			
Service	14 Mode =		rising signal (High)			
Service	15 1=N Used 2=Alrm 3=SD	*	1	1	4	
Service	16 Mode =	t	Disabled			
Service	17 Alarm delay time	*	0.1	0	500	
Service	18 Action on Failed Signal	*	2	1	5	
Service	19 Mode =		Alarm			

Service: S04 AI 4 setup

Category	Field Name	Value	Low	High	User Value	
Service	01 Select Function for AI04	1				
					10-	

			Ambient Turbine Inlet			
Service	02 Mode =		Temp			
Service	03 1=4-20mA 2=0-5V	*	1	1	2	
Service	04 Mode =		Channel configured as 4-20 mA			
Service	05 Analog 4 Value @ 4 mA =	*	0	-20000	20000	
Service	06 Analog 4 Value @ 20 mA =	*	100	-80000	80000	
Service	07 Analog 4 Value		-0.39			
Service	08 Analog 4 Offset	*	0	-487500	487500	
Service	09 Analog 4 Gain	*	1	0	2	
Service	10 Failed sensor delay time	*	0.1	0	5	
Service	11 Configurd for Custom Sig		FALSE			
Service	12 Custom Use Event Level	*	1000	-15000	15000	
Service	13 Alarm Low=T Hi=F	*	FALSE			
Service	14 Mode =		Alarm on rising signal (High)			
Service	15 1=N_Used 2=Alrm 3=SD	*	1	1	4	
Service	16 Mode =		Disabled			
Service	17 Alarm delay time	*	0.1	0	500	
Service	18 Action on Failed Signal	*	2	1	5	
Service	19 Mode =		Alarm			

Service: S05 AI 5 setup

Oel Vice. O	os Al 5 setup					User
Category	Field Name	-	Value	Low	High	Value
Service	01 Select Function for AI05		1			
Service	02 Mode =		Remote VAR/PF Reference			
Service	03 1=4-20mA 2=0-5V	*	1	1	2	
Service	04 Mode =		Channel configured as 4-20 mA			
Service	05 Analog 5 Value @ 4 mA =	*	-40	-20000	20000	
Service	06 Analog 5 Value @ 20 mA =	*	140	-80000	80000	
Service	07 Analog 5 Value		58.79			
Service	08 Analog 5 Offset	*	0	-487500	487500	
Service	09 Analog 5 Gain	*	1	0	2	
Service	10 Failed sensor delay time	*	0.1	0	5	
Service	11 Configurd for Custom Sig		FALSE			
Service	12 Custom Use Event Level	*	1000	-15000	15000	
Service	13 Alarm Low=T Hi=F	*	FALSE			
Service	14 Mode =		Alarm on rising signal (High)			
Service	15 1=N Used 2=Alrm 3=SD	*	1	1	4	
Service	16 Mode =		Disabled			
Service	17 Alarm delay time	*	0.1	0	500	
Service	18 Action on Failed Signal	*	2	1	5	
Service	19 Mode =	Τ	Alarm			

Service: S06 AI 6 setup

Ostanan			Malua	1	1.15 - 14	User
Category	Field Name		Value	Low	High	Value
Service	01 Select Function for AI06		1			
			EGT Signal (if 4-20			
			Summary			
Service	02 Mode =		used)			
Service	03 1=4-20mA 2=0-5V	*	1	1	2	
			Channel			
0			configured			
Service	04 Mode =		as 4-20 mA			
Service	05 Analog 6 Value @ 4 mA =	*	0	-20000	20000	
Service	06 Analog 6 Value @ 20 mA =	*	2000	-80000	80000	
Service	07 Analog 6 Value		58.11			
Service	08 Analog 6 Offset	*	0	-487500	487500	
Service	09 Analog 6 Gain	*	1	0	2	
Service	10 Failed sensor delay time	*	0.1	0	5	
Service	11 Configurd for Custom Sig		FALSE			
Service	12 Custom Use Event Level	*	1000	-15000	15000	
Service	13 Alarm Low=T Hi=F	*	FALSE			
			Alarm on			
			rising signal			
Service	14 Mode =		(High)	1.		
Service	15 1=N_Used 2=Alrm 3=SD	*	1	1	4	
Service	16 Mode =		Disabled			
Service	17 Alarm delay time	*	0.1	0	500	
Service	18 Action on Failed Signal	*	2	1	5	
Service	19 Mode =		Alarm			

Service: S07 AI 7 setup

						User
Category	Field Name		Value	Low	High	Value
Service	01 0=n used 1=GTC 2=Cust		1			
Service	02 Mode =		Compressor Discharge Pressure A			
Service	03 Analog 7 Value @ 4 mA =	*	-40	-20000	20000	
Service	04 Analog 7 Value @ 20 mA =	*	140	-20000	20000	
Service	05 Analog 7 Value		-40.09			
Service	06 Analog 7 Offset	*	0	-487500	487500	
Service	07 Analog 7 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S08 AI 8 setup

Category	Field Name	Value	Low	High	User

Value

				-		
Service	01 0=n used 1=GTC 2=Cust		0			
Service	02 Mode =		Not Used			
Service	03 Analog 8 Value @ 4 mA =	*	0	-20000	20000	
Service	04 Analog 8 Value @ 20 mA =	*	100	-20000	20000	
Service	05 Analog 8 Value		0.01			
Service	06 Analog 8 Offset	*	0	-487500	487500	
Service	07 Analog 8 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S09 AI 9 setup

						User
Category	Field Name		Value	Low	High	Value
Service	01 0=n_used 1=GTC 2=Cust		0			
Service	02 Mode =		Not Used			
Service	03 Analog 9 Value @ 4 mA =	*	0	-20000	20000	
Service	04 Analog 9 Value @ 20 mA =	*	100	-20000	20000	
Service	05 Analog 9 Value		0.01			
Service	06 Analog 9 Offset	*	0	-487500	487500	
Service	07 Analog 9 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S10 AI 10 setup

Category	Field Name		Value	Low	High	User Value
Service	01 0=n_used 1=GTC 2=Cust		0			
Service	02 Mode =		Not Used			
Service	03 Analog 10 Value @ 4 mA =	*	0	-20000	20000	
Service	04 Analog 10 Value@ 20 mA =	*	100	-20000	20000	
Service	05 Analog 10 Value		0			
Service	06 Analog 10 Offset	*	0	-100	100	
Service	07 Analog 10 Gain	*	1	0	2	

GTC190A Gas Turbine Control/Generator Applications

Service	08 Failed sensor delay time	*	0.1	0	5
Service	09 Custom Use Event Level	*	1000	-15000	15000
Service	10 Alarm Low=T Hi=F	*	FALSE		
Service	11 Mode =		Alarm on rising signal (High)		
Service	12 Select Action on Event	*	1	1	4
Service	13 Mode =		Disabled		
Service	14 Alarm delay time	*	0.1	0	500
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5
Service	16 Mode =		Alarm		

Service: S11 AI 11 setup

	in Aim Setup					User
Category	Field Name		Value	Low	High	Value
Service	01 0=n used 1=GTC 2=Cust		0			
Service	02 Mode =		Not Used			
Service	03 Analog 11 Value @ 4 mA =	*	0	-20000	20000	
Service	04 Analog 11 Value@ 20 mA =	*	500	-20000	20000	
Service	05 Analog 11 Value		13.54			
Service	06 Analog 11 Offset	*	0	-487500	487500	
Service	07 Analog 11 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S12 AI 12 setup

Der vice. O	orz Ar iz Setup					User
Category	Field Name		Value	Low	High	Value
Service	01 0=n used 1=GTC 2=Cust		0			
Service	02 Mode =		Not Used			
Service	03 Analog 12 Value @ 4 mA =	*	0	-20000	20000	
Service	04 Analog 12 Value@ 20 mA =	*	100	-20000	20000	
Service	05 Analog 12 Value		0			
Service	06 Analog 12 Offset	*	0	-487500	487500	
Service	07 Analog 12 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	

GTC190A Gas Turbine Control/Generator Applications
--

Service	15 SNSR FLT T=SD F=Alrm	2	1	5	
Service	16 Mode =	Alarm			

Service: S13 AI 13 setup

Service. C	olo Al lo setup					User
Category	Field Name		Value	Low	High	Value
Service	01 0=n used 1=GTC 2=Cust		1			
Service	02 Mode =		Analog Flame Detector A (1)			
Service	03 Analog 13 Value @ 4 mA =	*	4	-20000	20000	
Service	04 Analog 13 Value@ 20 mA =	*	20	-20000	20000	
Service	05 Analog 13 Value		4			
Service	06 Analog 13 Offset	*	0	-487500	487500	
Service	07 Analog 13 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S14 AI 14 setup

••••••						User
Category	Field Name		Value	Low	High	Value
Service	01 0=n_used 1=GTC 2=Cust		1			
Service	02 Mode =		Analog Flame Detector B (2)			
Service	03 Analog 14 Value @ 4 mA =	*	4	-20000	20000	
Service	04 Analog 14 Value@ 20 mA =	*	20	-20000	20000	
Service	05 Analog 14 Value		24.08			
Service	06 Analog 14 Offset	*	0	-487500	487500	
Service	07 Analog 14 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S15 AI 15 setup

						User
Category	Field Name		Value	Low	High	Value
Service	01 0=n used 1=GTC 2=Cust		1			
			Analog Flame Detector C			
Service	02 Mode =		(3)			
Service	03 Analog 15 Value @ 4 mA =	*	4	-20000	20000	
Service	04 Analog 15 Value@ 20 mA =	*	20	-20000	20000	
Service	05 Analog 15 Value		6.18			
Service	06 Analog 15 Offset	*	0	-487500	487500	
Service	07 Analog 15 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S16 AI 16 setup

						User
Category	Field Name		Value	Low	High	Value
Service	01 0=n used 1=GTC 2=Cust		1			
Canica	00 Mada -		Analog Flame Detector D			
Service	02 Mode =		(4)			
Service	03 Analog 16 Value @ 4 mA =	*	4	-20000	20000	
Service	04 Analog 16 Value@ 20 mA =	*	20	-20000	20000	
Service	05 Analog 16 Value		4.42			
Service	06 Analog 16 Offset	*	0	-487500	487500	
Service	07 Analog 16 Gain	*	1	0	2	
Service	08 Failed sensor delay time	*	0.1	0	5	
Service	09 Custom Use Event Level	*	1000	-15000	15000	
Service	10 Alarm Low=T Hi=F	*	FALSE			
Service	11 Mode =		Alarm on rising signal (High)			
Service	12 Select Action on Event	*	1	1	4	
Service	13 Mode =		Disabled			
Service	14 Alarm delay time	*	0.1	0	500	
Service	15 SNSR FLT T=SD F=Alrm	*	2	1	5	
Service	16 Mode =		Alarm			

Service: S17 T/C 1-7 SETUP

Category	Field Name		Value	Low	High	User Value
Service	01T/C 01 Input Value		172.27			
Service	02 T/C 01 Offset	*	0	-200	200	
Service	03 T/C 01 Gain	*	1	0.8	1.2	

Service	04 T/C 02 Input Value		57.17			
Service	05 T/C 02 Offset	*	0	-200	200	
Service	06 T/C 02 Gain	*	1	0.8	1.2	
Service	07 T/C 03 Input Value		55.77			
Service	08 T/C 03 Offset	*	0	-200	200	
Service	09 T/C 03 Gain	*	1	0.8	1.2	
Service	10 T/C 04 Input Value		55.57			
Service	11 T/C 04 Offset	*	0	-200	200	
Service	12 T/C 04 Gain	*	1	0.8	1.2	
Service	13 T/C 05 Input Value		58.96			
Service	14 T/C 05 Offset	*	0	-200	200	
Service	15 T/C 05 Gain	*	1	0.8	1.2	
Service	16 T/C 06 Input Value		53.78			
Service	17 T/C 06 Offset	*	0	-200	200	
Service	18 T/C 06 Gain	*	1	0.8	1.2	
Service	19 T/C 07 Input Value		64.45			
Service	20 T/C 07 Offset	*	0	-200	200	
Service	21 T/C 07 Gain	*	1	0.8	1.2	

Service: S18 T/C 8-14 SETUP

						User
Category	Field Name	-	Value	Low	High	Value
Service	01 T/C 08 Input Value		61.85			
Service	02 T/C 08 Offset	*	0	-200	200	
Service	03 T/C 08 Gain	*	1	0.8	1.2	
Service	04 T/C 09 Input Value		57.76			
Service	05 T/C 09 Offset	*	0	-200	200	
Service	06 T/C 09 Gain	*	1	0.8	1.2	
Service	07 T/C 10 Input Value		72.11			
Service	08 T/C 10 Offset	*	0	-200	200	
Service	09 T/C 10 Gain	*	1	0.8	1.2	
Service	10 T/C 11 Input Value		61.25			
Service	11 T/C 11 Offset	*	0	-200	200	
Service	12 T/C 11 Gain	*	1	0.8	1.2	
Service	13 T/C 12 Input Value		66.64			
Service	14 T/C 12 Offset	*	0	-200	200	
Service	15 T/C 12 Gain	*	1	0.8	1.2	
Service	16 T/C 13 Input Value		56.47			
Service	17 T/C 13 Offset	*	0	-200	200	
Service	18 T/C 13 Gain	*	1	0.8	1.2	
Service	19 T/C 14 Input Value		60.86			
Service	20 T/C 14 Offset	*	0	-200	200	
Service	21 T/C 14 Gain	*	1	0.8	1.2	

Service: S19 T/C 15-20 SETUP

Category	Field Name		Value	Low	High	User Value
Service	01 T/C 15 Input Value		59.26			
Service	02 T/C 15 Offset	*	0	-200	200	
Service	03 T/C 15 Gain	*	1	0.8	1.2	
Service	04 T/C 16 Input Value		63.45			

GTC190A Gas Turbine Control/Generator Applications

Service	05 T/C 16 Offset	*	0	-200	200	
Service	06 T/C 16 Gain	*	1	0.8	1.2	
Service	07 T/C 17 Input Value		-443.11			
Service	08 T/C 17 Offset	*	0	-200	200	
Service	09 T/C 17 Gain	*	1	0.8	1.2	
Service	10 T/C 18 Input Value		-443.11			
Service	11 T/C 18 Offset	*	0	-200	200	
Service	12 T/C 18 Gain	*	1	0.8	1.2	
Service	13 T/C 19 Input Value		-443.11			
Service	14 T/C 19 Offset	*	0	-200	200	
Service	15 T/C 19 Gain	*	1	0.8	1.2	
Service	16 T/C 20 Input Value		-443.11			
Service	17 T/C 20 Offset	*	0	-200	200	
Service	18 T/C 20 Gain	*	1	0.8	1.2	

Service: S20 DI 1-6 Setup

	20 DI 1-6 Setup					User
Category	Field Name		Value	Low	High	Value
Service	01 DI01 T=NO F=NC	*	TRUE			
Service	02 Mode =		Normally open switch			
Service	03 DI02 T=NO F=NC	*	FALSE			
Service	04 Mode =		Normally closed switch			
Service	05 DI03 T=NO F=NC	*	FALSE			
Service	06 Mode =		Normally closed switch			
Service	07 DI04 F=GTC T=Customer	*	FALSE			
Service	08 Mode =		System Acknowledg e (ALM & SD)			
Service	09 DI04 T=NO F=NC	*	FALSE			
Service	10 Mode =		Normally closed switch			
Service	11 DI05 F=GTC T=Customer	*	FALSE			
Service Service	12 Mode = 13 DI05 T=NO F=NC	*	PT Reference Lower Command FALSE Normally			
Service	14 Mode =		closed switch			
Service	15 Use PERM, ALM, SD?	*	5	1	5	
Service	16 DI06 F=GTC T=Customer	*	FALSE			
Service	17 Mode =		PT Reference Raise Command			
Service	18 DI06 T=NO F=NC	*	FALSE			
Service	19 Mode =		Normally closed switch			

GTC	GTC190A Gas Turbine Control/Generator Applications						
Service	20 Use PERM, ALM, SD?	* 5	1	5			

Service: S21 DI 7-11 Setup

Category	21 DI 7-11 Setup Field Name		Value	Low	High	User Value
Service	01 DI07 F=GTC T=Customer	*	FALSE			
Service	02 Mode =		PT Reference Select Fast Rate			
Service	03 DI07 T=NO F=NC	*	FALSE			
Service	04 Mode =		Normally closed switch			
Service	05 Use PERM, ALM, SD?	*	5	1	5	
Service	06 DI08 F=GTC T=Customer	*	FALSE			
Service	07 Mode =		PT Speed Signal Failed Override			
Service	08 DI08 T=NO F=NC	*	FALSE			
Service	09 Mode =		Normally closed switch			
Service	10 Use PERM, ALM, SD?	*	5	1	5	
Service	11 DI09 F=GTC T=Customer	*	FALSE			
Service	12 Mode =		Set PT Reference to Rated			
Service	13 DI09 T=NO F=NC	*	FALSE			
Service	14 Mode =		Normally closed switch			
Service	15 Use PERM, ALM, SD?	*	5	1	5	
Service	16 DI10 F=GTC T=Customer	*	FALSE			
Service	17 Mode =		Enable Process Control			
Service	18 DI10 T=NO F=NC	*	FALSE			
Service	19 Mode =		Normally closed switch			
Service	20 Use PERM, ALM, SD?	*	5	1	5	
Service	21 DI11 F=GTC T=Customer	*	5 FALSE			
Service	22 Mode =		Enable Reactive Load Control (VAR/PF)			
Service	23 DI11 T=NO F=NC	*	FALSE			
Service	24 Mode =		Normally closed switch			
Service	25 Use PERM, ALM, SD?	*	5	1	5	

Service: S22 DI 12-16 Setup

Category	Field Name		Value	Low	High	User Value
Service	01 DI12 F=GTC T=Customer	*	FALSE			
Service	02 Mode =		Enable			

			Remote PT Reference Setpoint			
Service	03 DI12 T=NO F=NC	*	FALSE			
Service	04 Mode =		Normally closed switch			
Service	05 Use PERM, ALM, SD?	*	5	1	5	
Service	06 DI13 F=GTC T=Customer	*	FALSE			
Service	07 Mode =		Inhibit Synchronizer			
Service	08 DI13 T=NO F=NC	*	FALSE			
Service	09 Mode =		Normally closed switch			
Service	10 Use PERM, ALM, SD?	*	5	1	5	
Service	11 DI14 F=GTC T=Customer	*	FALSE			
Service	12 Mode =		GEN Breaker Status (52) T=Closed			
Service	13 DI14 T=NO F=NC	*	FALSE			
Service	14 Mode =		Normally closed switch			
Service	15 Use PERM, ALM, SD?	*	5	1	5	
Service	16 DI15 F=GTC T=Customer	*	FALSE			
Service	17 Mode =		UTILITY Breaker Status T=Open			
Service	18 DI15 T=NO F=NC	*	FALSE			
Service	19 Mode =		Normally closed switch			
Service	20 Use PERM, ALM, SD?	*	5	1	5	
Service	21 DI16 F=GTC T=Customer	*	5 FALSE			
Service	22 Mode =		Fuel Sel / Transfer (TRUE=Liq)			
Service	23 DI16 T=NO F=NC	*	FALSE			
Service	24 Mode =		Normally closed switch			
Service	25 Use PERM, ALM, SD?	*	5	1	5	

Service: S23 DI 17-21 Setup

Category	Field Name		Value	Low	High	User Value
				LOW	light	Value
Service	01 DI17 F=GTC T=Customer	*	FALSE			
			Lower			
			Voltage (or			
			VAR/PF)			
Service	02 Mode =		Command			
Service	03 DI17 T=NO F=NC	*	FALSE			
			Normally			
			closed			
Service	04 Mode =		switch			
Service	05 Use PERM, ALM, SD?	*	5	1	5	

Service	06 DI18 F=GTC T=Customer	*	FALSE			
			Raise Voltage (or VAR/PF)			
Service	07 Mode =		Command			
Service	08 DI18 T=NO F=NC	 *	FALSE			
Service	09 Mode =		Normally closed switch			
Service	10 Use PERM, ALM, SD?	*	5	1	5	
Service	11 DI19 F=GTC T=Customer	*	FALSE		0	
Service	12 Mode =		Lower Process Control Setpoint			
Service	13 DI19 T=NO F=NC	*	FALSE			
Service	14 Mode =		Normally closed switch			
Service	15 Use PERM, ALM, SD?	*	5	1	5	
Service	16 DI20 F=GTC T=Customer	*	FALSE			
Service	17 Mode =		Raise Process Control Setpoint			
Service	18 DI20 T=NO F=NC	*	FALSE			
Service	19 Mode =		Normally closed switch			
Service	20 Use PERM, ALM, SD?	*	5	1	5	
Service	21 DI21 F=GTC T=Customer	*	FALSE			
Service	22 Mode =		Flame Detector Input 1			
Service	23 DI21 T=NO F=NC	 *	FALSE			
Service	24 Mode =		Normally closed switch			
Service	25 Use PERM, ALM, SD?	*	5	1	5	

Service: S24 DI 22-24 Setup

Service. C	24 DI 22-24 Setup					User
Category	Field Name		Value	Low	High	Value
Service	01 DI22 F=GTC T=Customer	ċ	FALSE			
Service	02 Mode =		Flame Detector Input 2			
Service	03 DI22 T=NO F=NC	i.	FALSE			
Service	04 Mode =		Normally closed switch			
Service	05 Use PERM, ALM, SD?	Ċ	5	1	5	
Service	06 DI23 F=GTC T=Customer	ć	FALSE			
Service	07 Mode =		Flame Detector Input 3			
Service	08 DI23 T=NO F=NC	ri F	FALSE			
Service	09 Mode =		Normally closed			

GTC190A Gas Turbine Control/Generator Applications

			switch			
Service	10 Use PERM, ALM, SD?	*	5	1	5	
Service	11 DI24 F=GTC T=Customer	*	FALSE			
Service	12 Mode =		Flame Detector Input 4			
Service	13 DI24 T=NO F=NC	*	FALSE			
Service	14 Mode =		Normally closed switch			
Service	15 Use PERM, ALM, SD?	*	5	1	5	

Service: S25 DO 3-7 Setup

						User
Category	Field Name	1	Value	Low	High	Value
Service	01 Select DO 03 function	*	10	1	30	
Service	02 Mode =		OPEN BREAKER COMMAND			
Service	03 DO_03 State =		De- energized			
Service	04 Select DO 04 function	*	11	1	30	
Service	05 Mode =		CLOSE BREAKER COMMAND De-			
Service	06 DO 04 State =		energized			
Service	07 Select DO_05 function	*	25	1	30	
Service	08 Mode =		OPEN GAS FUEL SHUTOFF VALVES			
Service	09 DO_05 State =		De- energized			
Service	10 Select DO 06 function	*	26	1	30	
Service	11 Mode =		OPEN LIQUID FUEL SHUTOFF VALVES			
Service	12 DO_06 State =		De- energized			
Service	13 Select DO 07 function	*	24	1	30	
Service	14 Mode =		IGNITORS ON			
Service	15 DO 07 State =		De- energized			

Service: S26 DO 8-12 Setup

Category	Field Name		Value	Low	High	User Value
Service	01 Select DO_08 function	*	23	1	30	
Service	02 Mode =		STARTER ENGAGED			
Service	03 DO_08 State =		De- energized			
Service	04 Select DO 09 function	*	9	1	30	
Service	05 Mode =		PT SPEED REF. LOWER			

			ĺ	LIMIT			
Service	06 DO_09 State =			Energized			
Service	07 Select DO 10 function	ŕ	k	12	1	30	
Service	08 Mode =			RAISE VOLT CMD TO AVR			
Service	09 DO_10 State =			De- energized			
Service	10 Select DO 11 function	4	k	13	1	30	
Service	11 Mode =			LOWER VOLT CMD TO AVR			
Service	12 DO 11 State =			De- energized			
Service	13 Select DO_12 function	ł	*	14	1	30	
Service	14 Mode =			SPEED IN CONTROL			
Service	15 DO_12 State =			De- energized			

Service: S27 AO 1-4 Setup

Category	Field Name		Value	Low	High	User Value
		*			24	value
Service	01 Select function for AO01		PT actual speed	1	24	
Service	02 Mode =		readout			
Service	03 Analog Out1 Val at 4 mA	*	0	-20000	20000	
Service	04 Analog Out1 Val at 20 mA	*	5000	-20000	20000	
Service	05 Present AO_01 dmd value		173.81			
Service	06 Select function for AO02	*	1	1	24	
Service	07 Mode =		PT actual speed readout			
Service	08 Analog Out2 Val at 4 mA	*	0	-20000	20000	
Service	09 Analog Out2 Val at 20 mA	*	5000	-20000	20000	
Service	10 Present AO 02 dmd value		173.81			
Service	11 Select function for AO03	*	1	1	24	
Service	12 Mode =		PT actual speed readout			
Service	13 Analog Out3 Val at 4 mA	*	0	-20000	20000	
Service	14 Analog Out3 Val at 20 mA	*	100	-20000	20000	
Service	15 Present AO 03 dmd value		173.81			
Service	16 Select function for AO04	*	1	1	24	
Service	17 Mode =		PT actual speed readout			
Service	18 Analog Out4 Val at 4 mA	*	0	-20000	20000	
Service	19 Analog Out4 Val at 20 mA	*	2000	-20000	20000	
Service	20 Present AO 04 dmd value		173.81			

Service: S28 AO 5-8 Setup

Category	Field Name	Value	Low	High	User Value
Service	01 Select function for AO07	* 1	1	24	
Service	02 Mode =	PT actual			

GTC190A Gas Turbine Control/Generator Applications

			speed readout			
Service	03 Analog Out7 Val at 4 mA	لا	0	-20000	20000	
Service	04 Analog Out7 Val at 20 mA	7	300	-20000	20000	
Service	05 Present AO_07 dmd value		173.87			
Service	06 Select function for AO08	7	1	1	24	
			PT actual speed			
Service	07 Mode =		readout			
Service	08 Analog Out8 Val at 4 mA	ł	0	-20000	20000	
Service	09 Analog Out8 Val at 20 mA	7	100	-20000	20000	
Service	10 Present AO_08 dmd value		173.87			

Service: S29 AO 9-10 Setup

Category	Field Name		Value	Low	High	User Value
Service	01 Select function for AO09	*	1	1	24	
Service	02 Mode =		PT actual speed readout			
Service	03 Analog Out9 Val at 4 mA	*	0	-20000	20000	
Service	04 Analog Out9 Val at 20 mA	*	100	-20000	20000	
Service	05 Present AO 09 dmd value		173.86			
Service	06 Select function for AO10	*	1	1	24	
Service	07 Mode =		PT actual speed readout			
Service	08 Analog Out10 Val at 4mA	*	0	-20000	20000	
Service	09 Analog Out10 Val at 20mA	*	100	-20000	20000	
Service	10 Present AO 10 dmd value		173.86			

Service: S30 PowerSense SETUP

	SU PowerSense SETUP					User
Category	Field Name		Value	Low	High	Value
Service	01 GEN Phase A Cur Gain	*	1	0.5	1.5	
Service	02 GEN Phase B Cur Gain	*	1	0.5	1.5	
Service	03 GEN Phase C Cur Gain	*	1	0.5	1.5	
Service	04 GEN Phase A Volt Gain	*	1	0.5	1.5	
Service	05 GEN Phase B Volt Gain	*	1	0.5	1.5	
Service	06 GEN Phase C Volt Gain	*	1	0.5	1.5	
Service	07 GEN PT Avg Volts		0			
Service	08 Voltage Units					
Service	09 GEN CT Avg Amps		0			
Service	10 Current Units					
Service	11 Mains Phase A Cur Gain	*	1	0.5	1.5	
Service	12 Mains Phase B Cur Gain	*	1	0.5	1.5	
Service	13 Mains Phase C Cur Gain	*	1	0.5	1.5	
Service	14 Mains Phase A Volt Gain	*	1	0.5	1.5	
Service	15 Mains Phase B Volt Gain	*	1	0.5	1.5	
Service	16 Mains Phase C Volt Gain	*	1	0.5	1.5	
Service	17 BUS PT Avg Volts		0			
Service	18 Voltage Units					
Service	19 BUS CT Avg Amps		0			
Service	20 Current Units					

Service: S31 RELAY OUTPUT FORCING

						User
Category	Field Name	<u> </u>	Value	Low	High	Value
Service	01 OK to Enter Cal Mode?		TRUE			
Service	02 Enable Calibration Mode	*	FALSE			
Service	03 Relay Out 01 Dmd State	*	FALSE			
Service	04 Relay Out 02 Dmd State	*	FALSE			
Service	05 Relay Out 03 Dmd State	*	FALSE			
Service	06 Relay Out 04 Dmd State	*	FALSE			
Service	07 Relay Out 05 Dmd State	*	FALSE			
Service	08 Relay Out 06 Dmd State	*	FALSE			
Service	09 Relay Out 07 Dmd State	*	FALSE			
Service	10 Relay Out 08 Dmd State	*	FALSE			
Service	11 Relay Out 09 Dmd State	*	FALSE			
Service	12 Relay Out 10 Dmd State	*	FALSE			
Service	13 Relay Out 11 Dmd State	*	FALSE			
Service	14 Relay Out 12 Dmd State	*	FALSE			

Service: S32 ANALOG OUTPUT FORCING

						User
Category	Field Name		Value	Low	High	Value
Service	01 Analog Out 01 Demand Val	*	0	-20000	20000	
Service	02 Analog Out 01 Offset	*	0	-1000	1000	
Service	03 Analog Out 01 Gain	*	1	0	2	
Service	04 Analog Out 02 Demand Val	*	0	-20000	20000	
Service	05 Analog Out 02 Offset	*	0	-1000	1000	
Service	06 Analog Out 02 Gain	*	1	0	2	
Service	07 Analog Out 03 Demand Val	*	0	-20000	20000	
Service	08 Analog Out 03 Offset	*	0	-487500	487500	
Service	09 Analog Out 03 Gain	*	1	0	2	
Service	10 Analog Out 04 Demand Val	*	0	-20000	20000	
Service	11 Analog Out 04 Offset	*	0	-487500	487500	
Service	12 Analog Out 04 Gain	*	1	0	2	
Service	13 Voltage Bias Out Demand Val	*	0	-20000	20000	
Service	14 Voltage Bias Out Offset	*	0	-50	50	
Service	15 Voltage Bias Out Gain	*	1	0.2	1.5	

Service: S33 ANALOG OUTPUT FORCING

						User
Category	Field Name		Value	Low	High	Value
Service	01 Analog Out 07 Demand Val	*	0	-20000	20000	
Service	02 Analog Out 07 Offset	*	0	-1000	1000	
Service	03 Analog Out 07 Gain	*	1	0	2	
Service	04 Analog Out 08 Demand Val	*	0	-20000	20000	
Service	05 Analog Out 08 Offset	*	0	-487500	487500	
Service	06 Analog Out 08 Gain	*	1	0	2	
Service	07 Analog Out 09 Demand Val	*	0	-20000	20000	
Service	08 Analog Out 09 Offset	*	0	-487500	487500	
Service	09 Analog Out 09 Gain	*	1	0	2	
Service	10 Analog Out 10 Demand Val	*	0	-20000	20000	
Service	11 Analog Out 10 Offset	*	0	-487500	487500	

Manual 26	432 GT	C190A Gas Turbi	A Gas Turbine Control/Generator Applications				
Service	12 Analog Out 10 Gain	*	1	0	2		

Service: S34 VALVE CALIB & STROKE

Category	Field Name		Value	Low	High	User Value
Service	01 OK to Enter Cal Mode?		TRUE			
Service	02 Enable Calibration Mode	*	FALSE			
Service	03 Gas Fuel Metr VLV Stroke	*	0	0	100	
Service	04 Gas Fuel Act 1 Output		0			
Service	05 Act1 Type 0-20 / 0-200mA	*	0	0	1	
Service	06 Act1 Type Chosen		Current Output 0-20 mA			
Service	07 Act1 mA at 0% Dmnd	*	4	-200	200	
Service	08 Readback of Min mA value		4			
Service	09 Act1 mA at 100% Dmnd	*	20	-200	200	
Service	10 Readback of Max mA value		20			
Service	11 Act1 Offset	*	0	-200	200	
Service	12 Act1 Gain	*	1	0	2	
Service	13 Act1 Dither	*	0	0	3	
Service	14 Liq Fuel Metr VLV Stroke	*	0	0	100	
Service	15 Liquid Fuel Act 2 Output		0			
Service	16 Act2 Type 0-20 / 0-200mA	*	0	0	1	
Service	17 Act2 Type Chosen		Current Output 0-20 mA			
Service	18 Act2 mA at 0% Dmnd	*	4	-200	200	
Service	19 Readback of Min mA value		4			
Service	20 Act2 mA at 100% Dmnd	*	20	-200	200	
Service	21 Readback of Max mA value		20			
Service	22 Act2 Offset	*	0	-200	200	
Service	23 Act2 Gain	*	1	0	2	
Service	24 Act2 Dither	*	0	0	3	
Service	25 Initiate Fuel XFER T=Liq	*	FALSE			

Service: S35 START / LITEOFF SETUP

						User
Category	Field Name		Value	Low	High	Value
Service	01 Use Electric Liteoff?	*	TRUE			
Service	02 Start Ramp Rate	*	0.3	0.1	100	
Service	03 Start Ramp Gas Min Fuel	*	0	0	100	
Service	04 Start Ramp Liq Min Fuel	*	0	0	100	
Service	05 Manual Crank/Starter ON	*	FALSE			
Service	06 Hold after Lite-off	*	FALSE			
Service	07 Manual Crank Time Limit	*	30	0.1	120	

Service: S36 START/STOP SEQUENCE

Category	Field Name		Value	Low	High	User Value
Service	01 Use Auto Start/Stop SEQ?	*	TRUE			
Service	02 Use Fuel SOV/IGN Output?	*	TRUE			
Service	03 Min Starter Crank Speed	*	1000	100	2000	
Service	04 Time to wait for Speed	*	20	0	120	

Service	05 Purge Timer/Crank Time?	*	30	о	3000	
Service	06 Wait for Liteoff Tmr Gas	*	10	2	30	
Service	07 Wait for Liteoff Tmr Liq	*	15	2	30	
Service	08 Starter Cutout Speed	*	2000	100	5000	
Service	09 Max Time to Idle Speed	*	120	5	600	
Service	10 Warm-up Time at Idle	*	30	2	600	
Service	11 Raise Ref at FastRate?	*	TRUE			
Service	12 Fast Rate to Rated Spd	*	50	2	1000	
Service	13 Max Time to Rated Spd	*	60	5	600	
Service	14 Cooldown Time/Idle	*	10	0	1800	

Service: S37 REMOTE SPEED REF SETUP

						User
Category	Field Name		Value	Low	High	Value
Service	01 Using Rem Ref Signl?		TRUE			
Service	02 Remote Ref Low Limit		3600			
Service	03 Remote Ref High Limit		3780			
Service	04 Remote Ref Lrg Error Rat	*	4	0	100	
Service	05 Remote Ref Small Window	*	1	0	100	
Service	06 Remote Ref Large Window	*	5	0	100	

Service: S38 SPEED CONTROL SETUP

						User
Category	Field Name		Value	Low	High	Value
Service	01 Spd Prop Gain 1	*	0.5	0	100	
Service	02 Spd Integral Gain 1	*	0.8	0	50	
Service	03 Spd SDR 1	*	0.2	0.01	100	
Service	04 Use Dual Dynamics	*	TRUE			
Service	05 Spd Prop Gain 2	*	0.15	0	100	
Service	06 Spd Integral Gain 2	*	0.5	0	50	
Service	07 Spd SDR 2	*	0.2	0.01	100	
Service	08 Spd Low Limit		3000			
Service	09 Spd High Limit		3780			
Service	10 Spd Reference Default Rate	*	2	0	1000	
Service	11 Spd Reference Fast Rate	*	4	0	1000	
Service	12 Use Spd Auto Override	*	TRUE			
Service	13 Time to wait for Speed		20			
Service	14 Speed Switch 1	*	1500	0	100000	
Service	15 Speed Switch 2	*	3500	0	100000	
Service	16 Speed Switch 3	*	3600	0	100000	
Service	17 Overspeed Test Enable	*	FALSE			
Service	18 OVRSPD bias (+/-100)	*	10	5	100	
Service	19 Speed Value		100			
Service	20 Speed Setpoint		3000			
Service	21 Spd Control PID Output		101			
Service	22 Raise Spd Reference	*	FALSE			
Service	23 Lower Spd Reference	*	FALSE			

Service: S39 EGT CONTROL SETUP

					User	
Category	Field Name	Value	Low	High	Value	
Service	01 EGT Contrl Base Setpoint	0				
45					M/a a alta	I

GTC190A Gas Turbine Control/Generator Applications

Service	02 EGT PID Proportional Gn	*	0.	.3	0.001	100	
Service	03 EGT PID Integral Gain	*	0.	.8	0	50	
Service	04 EGT PID SDR term	*	1(00	0.01	100	
Service	05 Use Temp Start Ramp	*	۶ F	ALSE			
Service	06 Temp Ramp Lo Temp	*	60	00	0	10000	
Service	07 Temp Ramp Hi Temp	*	90	00	0	10000	
Service	08 Temp Ramp Rise Rate	*	⁻ 1(0	0	100	
Service	09 EGT Average Temp		-1	.77			
Service	10 EGT Control PID Output		0.	.54			
Service	11 EGT Deriv Setpoint rate	*	5		0	50	

Service: S40 REAL LOAD CONTROL SETUP

Service. S	40 REAL LOAD CONTROL SETUP					User
Category	Field Name		Value	Low	High	Value
Service	01 Confirm MW Sensr Range		80			
Service	02 Droop Percent	*	5	0	8	
Service	03 Min Load mW Setpoint	*	2	0.5	20	
Service	04 Base Load mW Setpoint	*	50	1	200	
Service	05 Using Remote MW Setpoi		FALSE			
Service	06 Auto Loading Rate (sec	*	60	1	7200	
Service	07 Normal Unload Rate	*	60	1	7200	
Service	08 Low Load / Open Brkr L		2			
Service	09 Low Load Alarm Level	*	5	0	30000	
Service	10 High Load Alarm Level	*	300	0	30000	
Service	11 Use Load Limiter (=2)	*	FALSE			
Service	12 Load PID Prop Gain	*	1.25	0.001	100	
Service	13 Load PID Integral Gain	*	2.2	0	50	
Service	14 Load PID Output Value		101			
Service	15 Enable LS Functions		FALSE			
Service	16 Utility Breaker Open?		FALSE			
Service	17 XFER Rate IN/OUT of LS	*	10	0.1	60	
Service	18 Number of Network Node		0			
Service	19 Number of Nodes in LS		0			

Service: S41 SYNCHRONIZER

-				_		User
Category	Field Name		Value	Low	High	Value
Service	01 SYNC MODE	*	4	1	4	
Service	02 SYNC MODE		RUN/AUTO			
Service	03 SYNC GAIN	*	0.15	0.001	100	
Service	04 SYNC INTEGRAL	*	0.56	0.01	100	
Service	05 VOLTAGE RAMP TIME	*	300	1	600	
Service	06 SYNCROSCOPE		180			
Service	07 VOLTAGE MATCHING	*	TRUE			
Service	08 VOLTAGE MATCHING		ENABLED			
Service	09 VOLTAGE WINDOW	*	1	0.1	10	
Service	10 SYNC TYPE	*	TRUE			
Service	11 SYNC TYPE		PHASE CONTROL			
Service	12 PHASE WINDOW	*	10	2	20	
Service	13 SLIP WINDOW	*	0.1	-0.3	0.3	
Service	14 SLIP FREQUENCY	*	0.1	-0.3	0.3	

i.				1	
Service	15 CLOSE ATTEMPTS	*	3	0	20
Service	16 RECLOSE DELAY	*	5	1	1200
Service	17 AUTO RESYNCRONIZE	*	TRUE		
Service	18 AUTO RESYNCRONIZE		ENABLED		
Service	19 CIRCUIT BREAKER TYPE	*	TRUE		
Service	20 CIRCUIT BREAKER TYPE		BREAKER		
Service	21 SYNCH TIMEOUT	*	0	0	1200
Service	22 DEADBUS CLOSURE	*	TRUE		
Service	23 DEADBUS CLOSURE		ENABLED		
Service	24 BREAKER HOLD TIME	*	1	0	10
Service	25 BKR CLOSE DLY TIME	*	0.1	0.01	2
Service	26 ENABLE SYNC TEST	*	FALSE		
Service	27 ENABLE SYNC TEST		DISABLED		
Service	28 SLIP WITHIN LIMITS		FALSE		
Service	29 PHASE WITHIN LIMITS		FALSE		
Service	30 VOLTAGE WITHIN LIMITS		FALSE		
Service	31 RECLOSE ATTEMPTS		0		
Service	32 SYNC TIMEOUT REMAINING		0		
Service	33 SYNC STATE		DISABLED		
Service	34 SYNC MODE		DISABLED		
Service	35 GEN STABLIZE TIME DELAY	*	30	1	30000

Service: S42 REACTIVE LOAD CONTROL

						User
Category	Field Name		Value	Low	High	Value
Service	01 Select VAR/PF Mode	*	0	0	2	
Service	02 Mode Selected		Disabled			
Service	03 VARPF GAIN	*	0.2	0.01	20	
Service	04 VOLTAGE RAMP TIME	*	20	0	1000	
Service	05 PF SHARE GAIN	*	0.2	0.001	20	
Service	06 VARPF INTEGRAL GN	*	0.1	0	20	
Service	07 VAR/PF PID Output		0			
Service	08 INITIAL VAR REFERENCE	*	10	-30000	30000	
Service	09 VAR REFERENCE		0			
Service	10 GEN TOTAL VAR		0			
Service	11 INITIAL PF REFERENCE	*	0	-0.5	0.5	
Service	12 PF REFERENCE		1			
Service	13 PF REF DIRECTION		Lag			
Service	14 PF DEADBAND	*	0.03	0	1	
Service	15 GEN AVERAGE PF		1			
Service	16 PF ACTUAL DIRECTION		Lag			
Service	17 OPERATING VOLTAGE	*	480	0.001	30000	
Service	18 IS VAR/PF CNTRL ENABLED		FALSE			
Service	19 VAR/PF CNTRL STATUS		VAR/PF Disabled			
Service	22 VOLTAGE BIAS OUTPUT		0			
Service	23 KVA Switch Hi Level	*	30	0	30000	
Service	24 KVA Switch Lo Level	*	5	0	30000	
Service	25 Use Voltage Trim?	*	FALSE			

Service: S43 PROCESS CONTROL

Category	Field Name		Value	Low	High	User Value
Service	01 PROCESS GAIN	*	0.05	0.001	20	Value
Service	02 PROCESS INTEGRAL GN	*	0.3	0.001	20	
Service	03 PROCESS DERIVATIVE	*	100	0.01	100	
Service	04 PROCESS PID OUTPUT		100			
Service	05 PROCESS DEADBAND	*	0	-30000	30000	
Service	06 PROCESS DROOP	*	0	0	50	
Service	07 PROCESS FILTER	*	1	0.01	10	
Service	08 PROCESS SETPOINT	*	0	-30000	30000	
Service	09 ENABLE REM ANALOG SET	*	FALSE			
Service	10 PROCESS REF VALUE		-0.04			
Service	11 PROCESS INPUT VALUE		-0.04			
Service	12 PROCESS PERMS MET?		FALSE			
Service	13 PROCESS CNTRL ON?		FALSE			
Service	14 ENABLE DISCRET INS	*	FALSE			
Service	15 Direct Proc (F=Indirect)	*	TRUE			
Service	16 Process Load Rate	*	0.2	0	10	
Service	17 Process Unload Rate	*	0.2	0	10	
Service	18 This Unit is Proc Master		TRUE			

Service: S44 GENERATOR PROTECTION 1

Oel Vice. O	44 GENERATOR PROTECTION 1					User
Category	Field Name		Value	Low	High	Value
Service	01 GEN Over Volt Alm Level	*	700	0	30000	
Service	02 GEN Under Volt Alm Leve	*	300	0	30000	
Service	03 GEN Over/Under VIt Dela	*	10	0.1	120	
Service	04 GEN Phas OverCur AlmLv	*	1500	0	3000	
Service	05 GENPhas OverCur CurvShf	*	1	0.01	10	
Service	06 GEN Over Freq Alm Level	*	70	40	70	
Service	07 GEN Under Freq Alm Leve	*	40	40	70	
Service	08 GEN Over/Undr Freq Dela	*	10	0.1	120	
Service	09 GEN Over Power Alm Leve	*	11000	-30000	30000	
Service	10 GEN Reverse Powr Alm Lv	*	-50	-30000	30000	
Service	11 GEN Direct Pwr Curv Shf	*	1	0.01	10	
Service	12 GEN Over VAR Alm Level	*	1500	-30000	30000	
Service	13 GEN Reverse VAR Alm Lvl	*	-50	-30000	30000	
Service	14 GEN Direct VAR Alm Dela	*	10	0.1	120	
Service	15 GEN NegPhzSeq OvrVlt Lv	*	150	0	30000	
Service	16 GEN NegPhzSeq OvrVlt DI	*	10	0.1	120	
Service	17 GEN NegPhzSeq OvrCur Lv	*	150	0	30000	
Service	18 GEN NegPhzSeq OvrCur DI	*	10	0.1	120	
Service	19 GEN PhasCur Diff Alm Lv	*	150	0	30000	
Service	20 GEN PhasCurDiff CurvShf	*	1	0.01	10	

Service: S45 GENERATOR PROTECTION 2

Category	Field Name		Value	Low	High	User Value
Service	01 GEN Over Volt Warn Leve	*	700	0	30000	
Service	02 GEN Under Volt Warn Lev	*	300	0	30000	
Service	03 GEN Over/Under VIt Dela	*	10	0.1	120	
Service	04 GEN Phas OverCur WarnLv	*	1500	0	3000	

		*		4.0	l-a	1 1
Service	05 GEN Over Freq Warn Leve	*	70	40	70	
Service	06 GEN Under Freq Warn Lev	*	40	40	70	
Service	07 GEN Over/Undr Freq Dela	*	10	0.1	120	
Service	08 GEN Over Power Warn Lev	*	11000	-30000	30000	
Service	09 GEN Revers Powr Warn Lv	*	-50	-30000	30000	
Service	10 GEN Over VAR Warn Level	*	1500	-30000	30000	
Service	11 GEN Reverse VAR Warn Lv	*	-50	-30000	30000	
Service	12 GEN Direct VAR Warn Del	*	10	0.1	120	
Service	13 GEN NegPhzSeq OvrVlt Lv	*	150	0	30000	
Service	14 GEN NegPhzSeq OvrVIt DI	*	10	0.1	120	
Service	15 GEN NegPhzSeq OvrCur Lv	*	150	0	30000	
Service	16 GEN NegPhzSeq OvrCur DI	*	10	0.1	120	
Service	17 GEN PhasCur Dif Warn Lv	*	150	0	30000	

Appendix E. Pre-Installation Control Information Checklist

Detail an I/O list (interfaces to GTC Fuel Control)

- Analog Inputs & Outputs (ranges, units, alarm & shutdown points)
- Discrete Inputs Active high or low
- Relay outputs NO or NC, contact load ratings
- MPU Speed sensor specifications (# of teeth, gear ratio, hi/lo fail speeds)
- PowerSense module info PT/CT ratios, rated voltage, frequency
- Fuel Actuator/Valve drivers mA range (need SPC?), PPH flow vs. Valve Pos.
- Operator Interface size, location, desired functionality
- Communication Links to other devices signal type, protocols
- Termination wiring details (existing & upgrades)

Control Limits

- EGT topping temperature limit
- EGT Derivative Limit (degrees F / sec)
- Speed upper limit (Alm & SD), Ref limits (high & low)
- Any Required Acceleration or Deceleration Schedules
- Load Control functions utilized (or desired in the upgrade)

Start-up Information

- Electrical or Mechanical lite-off, valve degrees, start ramp percent
- Fuel Info Type, supply pressure, LHV, SG, fuel flow information
- Manifold pressure at lite-off
- Any EGT Start overtemp limit
- Time from Lite-off to Idle Speed
- Time from Idle to Rated speed

Running Information

- How do they typically operate the unit (Peak, Baseload, Process...)
- Gathering the following info will greatly simplify GTC control configuration

Data Point	CDP (psia) or Load (mw)	EGT (deg F)	PT Speed Ref.	Fuel Valve (%)	Fuel Flow
@ Idle Speed					
@ Rated speed					
@ 10% Load					
@ 25% Load					
@ 50% Load					
@ 75% Load					
@ 100% Load					

Appendix F. Interfacing to Distributed IO and Ladder Logic

Adding Ladder Logic Programming into the GTC190A

The system documentation CD contains the source code of the Master GAP file (or sometimes called the Second-ring file). The programmer should have a good working knowledge of GAP programming and the use of the GAP editor tool, including a clear understanding of what the meaning of terms template and coder versions. In most cases the GTC190A GAP file will be used as a reference in finding the software 'handles' (both input & output) of the control signals and also the tunable fields that have been programmed as being available to the Ladder Logic programming environment. The programmer can pass any GAP block output field to Ladder Logic for use in programming.

Additional programming help can be found in the GAP help file that will assist the programmer in interfacing the 2 programs together.

The LL category contains GAP blocks that are created for use by Ladder Logic.

The programmer should refer to Woodward Ladder Logic programming tool for more information on programming structure and methodology.

Allen-Bradley Flex IO

The GTC190A Master GAP file includes sheets that contains all of the GAP blocks that are required to interface to a defined set of Allen-Bradley Flex I/O Modules (1794-series). The user can use the program to access all inputs and outputs as well as fault flags for the individual modules and channels.

The Allen-Bradley Flex IO design utilizes a PROFIBUS communication head that has up to 8 IO module blocks programmed after it. In the GTC implementation 4 heads are used designated as Slave 1 through Slave 4. The GTC190A comes with an installation CD of the Applicom I/O configuration tool (Version 2.2). Once this is done the user will need to construct a setup file to match his actual hardware. It is important that the layout match the one shown in the control wiring appendix of this manual. Either the AB Profibus or ProSoft communication heads can be used, however they do require different Applicom configuration files. An example applicom file is supplied on the CD and can be used as a guide in adding this information to the specific Applicom file configuration for the system. Once the file setup is complete it must be 'compiled' by the applicom tool to create an *applicom.ply* file. This file must be placed on the Atlas-II™ with the application to allow the GAP to interface to the distributed I/O.

IMPORTANT

Refer to Appendix A for I/O Module Layout. It is critical to follow this layout exactly so that the GAP logic can correctly decode the information from the addresses sent from the communication heads. It is possible to leave out the last nodes in the equipment groups 1 & 2. In groups 3 & 4 it is not acceptable to leave out nodes between the first and last, unless you are not using any RTDs or AO modules. For example – if any RTD nodes are needed, then all 6 T/C nodes must be present.

We appreciate your comments about the content of our publications.

Send comments to: icinfo@woodward.com

Please reference publication 26432.

PO Box 1519, Fort Collins CO 80522-1519, USA 1000 East Drake Road, Fort Collins CO 80525, USA Phone +1 (970) 482-5811 • Fax +1 (970) 498-3058

Email and Website-www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.

2009/4/Fort Collins