

MFR 11 Packages Protection Relay

Manual Version 3.1xxx

WARNING

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

CAUTION

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a
 grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

OUT-OF-DATE PUBLICATION

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website:

http://www.woodward.com/pubs/current.pdf

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:

http://www.woodward.com/publications

If your publication is not there, please contact your customer service representative to get the latest copy.

Important definitions

WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.

NOTE

Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward All Rights Reserved.

Page 2/59 © Woodward

Revision History

Rev.	Date	Editor	Changes
NEW	06-03-02	TP	Release based on 37140A
A	07-07-17	TP	Zero voltage monitoring parameters corrected; relay assignment for SC Packages updated

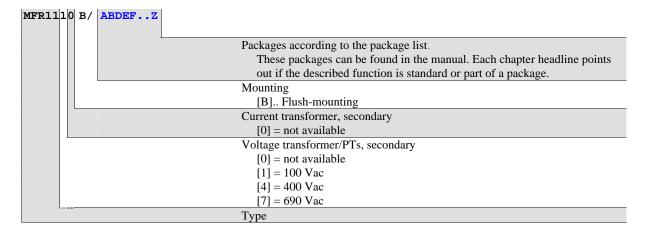
Contents

CHAPTER 1. GENERAL INFORMATION	6
Introduction	
Measurement Value Logging	
Package Functional Descriptions	8
CHAPTER 2. ELECTROSTATIC DISCHARGE AWARENESS	9
CHAPTER 3. INSTALLATION	10
Wiring Diagram 100/400 V Package Models (Standard)	
Wiring Diagram 690 V Package Models (Packages MP / G59)	
Power Supply (Packages MP / VDEW / G59 / SC)	
Wide Range Power Supply (Packages NU / G59N / SC+N)	
Measuring Inputs	
Voltage	
Discrete Inputs	
Outputs	
Relay Outputs (Standard / Packages G59 & G59N)	
DPC - Direct Configuration Interface	
Di G - Direct Configuration interface	10
CHAPTER 4. FUNCTIONAL DESCRIPTION	
Control Inputs	
Control Outputs	
Alarms	
Alarm Messages	
Alarm Acknowledgement	19
CHAPTER 5. DISPLAY AND OPERATING ELEMENTS	20
Brief Description of LEDs and Push Buttons	20
LEDs	21
Push Buttons	
LC Display	
Display in Automatic Mode (First Line of the Display: Measured Values)	
Display in Automatic Mode (Second Line of the Display: Measured Values)	
Display in Automatic Mode (Second Line of the Display: Alarm Indication)	24

CHAPTER 6. CONFIGURATION	25
Basic Data	26
Configuration Access	
Password	
Change Passwords	
Direct Configuration	
Measurement	
Voltage Measurement	
Potential Transformer Configuration	
Rated Values (Packages SC & SC+N)	
Control Functions	31
Synchronization (Packages SC & SC+N)	
Type of Monitoring	
Protection	
Overvoltage Monitoring	
Undervoltage Monitoring	35
Zero Voltage Monitoring (Packages SC & SC+N)	36
Voltage Asymmetry Monitoring	
Overfrequency Monitoring	
Underfrequency Monitoring	
Vector / Phase Shift Monitoring (Packages VDEW / G59 / G59N)	
df/dt (ROCOF) Monitoring (Packages G59 & G59N)	
Relay Configuration	
Auto Acknowledgement of the Relays	
Auto Acknowledgement of Messages	43
CHAPTER 7. COMMISSIONING	<u> 46</u>
APPENDIX A. DIMENSIONS	47
APPENDIX B. TECHNICAL DATA	48
APPENDIX C. MEASURED QUANTITIES AND ACCURACY	<u>50</u>
APPENDIX D. LIST OF PARAMETERS	51
APPENDIX E. SERVICE OPTIONS	54
Product Service Options	54
Returning Equipment for Repair	
Packing a Control	
Return Authorization Number RAN	55
Replacement Parts	
How to Contact Woodward	
Engineering Services	
Technical Assistance	

Illustrations and Tables

Illustrations


Figure 3-1: Wiring diagram 100/400 V package models	10
Figure 3-2: Wiring diagram 690 V package models	11
Figure 3-3: Power supply	
Figure 3-4: Wide range power supply	
Figure 3-5: Measuring inputs - voltage 100/400 V versions	
Figure 3-6: Measuring inputs - voltage, 690 V version	
Figure 3-7: Measuring inputs - synchronizing voltage	
Figure 3-8: Discrete inputs	
Figure 3-9: Relay outputs	
Figure 5-1: Front panel	
Figure 7-1: Dimensions	
Tables	
Table 3-1: Conversion chart - wire size	
Table 4-1: Alarm messages	19
Table 5-1: Alarm messages	24
Table 6-1: Release delay of the relays	43
Table 6 1. Protective function autout to relay	14

Chapter 1. General Information

Introduction

The MFR 11 model is a generator or mains protection unit packaged into one compact device. Typical applications are generators and switchgear equipment that require independent protection architecture. Different packages offer additional functionality

The detailed model description for the MFR 11 reads as follows:

Examples:

- MFR1110B/MP (flush mounted, standard unit with 100 Vac PT inputs with MP Package [over-/undervoltage, voltage asymmetry, and over-/underfrequency monitoring, 3 relay outputs])
- <u>MFR1140B/G59N</u> (flush mounted, standard unit with 400 Vac PT inputs with G59N Package [MP Package + phase/vector shift and df/dt ROCOF monitoring, 8 relay outputs, wide-range power supply])

Page 6/59 © Woodward

Measurement Value Logging

Voltage

Voltage is displayed as three-phase r.m.s measurement of the phase-neutral and/or phase-phase voltages. Package SC utilizes single-phase r.m.s. measurement of the synchronizing voltage V_{L1-L2} .

This device can be ordered with the following measuring voltage input ranges (rated voltages). Please indicate the measuring voltage input required when ordering (refer to Technical Data on page 48):

66 V/115 V[1]
 230 V/400 V[4]
 400 V/690 V[7]

Frequency

Frequency measurement is extracted from the digitally filtered measuring voltages. The frequency is measured three-phase if the measured voltage exceeds 15% of the nominal voltage. This ensures rapid and precise measurement of the frequency. However the frequency is still measured correctly even if voltage is only applied to one phase.

© Woodward Page 7/59

Package Functional Descriptions

Depending on the model, the unit is equipped with the following functions

Function		Package					
	MP	NU	VDEW	G 59	R629N	SC	SC+N

General functions								
1 ready for operation relay output (normally open contact)		✓	✓	✓	✓	✓	✓	✓
Additional freely configurable relay outputs (2 change-over contacts)	i	✓	✓	✓	✓	✓	✓1	√ ¹
Additional freely configurable relay outputs (4 change-over contacts, 1 normally open contact)					✓	✓		
Discrete input for blocking of protective functions or remote acknowledgment		✓	✓	✓	✓	✓	✓	✓
Password system		✓	✓	✓	✓	✓	✓	✓
Wide-range power supply (90 to 265 Vac/dc)	ΙĪ		✓			✓		✓

Protective functions									
Three-phase over-/undervoltage monitoring (2 limits)	V>, V<	✓	·	/	✓	✓	✓	✓	✓
Zero voltage monitoring: dead bus start (close CB to dead busbar)	V ≠ 0							✓	✓
Voltage asymmetry monitoring	V _{AS} >	✓	·	/	✓	✓	✓	✓	✓
Three-phase over-/underfrequency monitoring (2 limits)	f>, f<	✓	·	/	✓	✓	✓	✓	✓
Vector/phase shift monitoring	dφ/dt				✓	✓	✓		
df/dt ROCOF monitoring	df/dt					✓	✓		
Synch-check function (not available for 690 V versions)	$I_E >$, $I_E >>$							✓	✓

only 1 freely configurable relay, the other one is fixed to synch-check

Intended Use The unit must only be operated in the manner described by this manual. The prerequisite for a proper and safe operation of the product is correct transportation, storage, and installation as well as careful operation and maintenance.

NOTE

This manual has been developed for all available packages. Inputs/outputs, functions, configuration screens, and other details described, which do not exist on your unit, may be ignored.

The present manual has been prepared to enable the installation and commissioning of the unit. Due to the large variety of parameter settings, it is not possible to cover every combination. The manual is therefore only a guide. In case of incorrect entries or a total loss of functions, the default settings may be taken from the list of parameters enclosed at the rear of this manual.

Page 8/59 © Woodward

Chapter 2. Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- 2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as easily as synthetics.
- 3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, etc.) away from the control, modules, and work area as much as possible.
- 4. Opening the control cover may void the unit warranty.

Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:

- Ensure that the device is completely voltage-free (all connectors have to be disconnected).
- Do not touch any part of the PCB except the edges.
- Do not touch the electrical conductors, connectors, or components with conductive devices or with bare hands.
- When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

© Woodward Page 9/59

Chapter 3. Installation

Wiring Diagram 100/400 V Package Models (Standard)

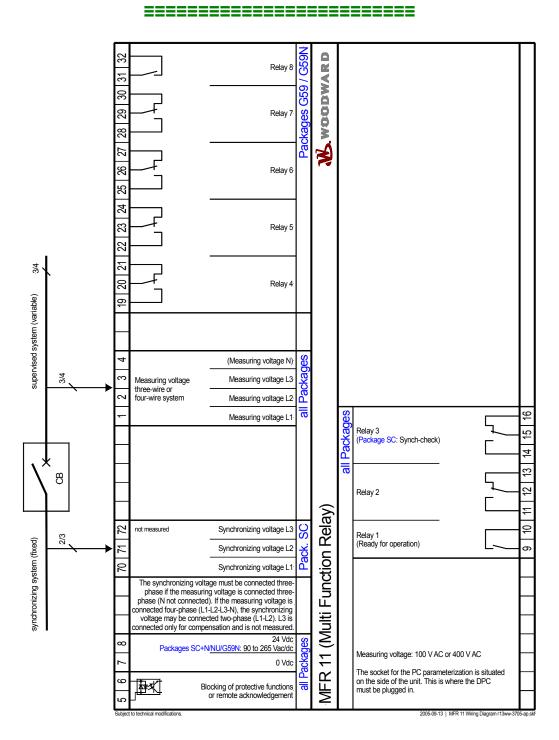


Figure 3-1: Wiring diagram 100/400 V package models

Page 10/59 © Woodward

Wiring Diagram 690 V Package Models (Packages MP / G59)

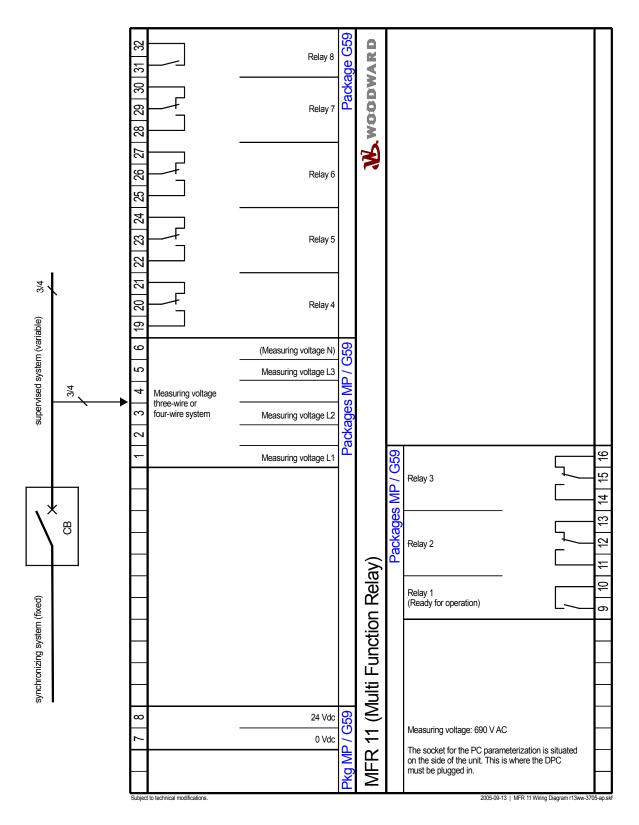


Figure 3-2: Wiring diagram 690 V package models

© Woodward Page 11/59

WARNING

All technical data and ratings indicated in this chapter are not definite! Only the values indicated under Technical Data on page 48 are valid!

CAUTION

A circuit breaker must be located near to the unit and in a position easily accessible to the operator. This must also bear a sign identifying it as an isolating switch for the unit.

NOTE

Inductive devices connected to the system (such as operating current coils, undervoltage tripping units, or auxiliary/power contacts) must be connected to a suitable interference suppressor.

The following chart may be used to convert square millimeters [mm²] to AWG and vice versa:

AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²
30	0.05	21	0.38	14	2.5	4	25	3/0	95	600MCM	300
28	0.08	20	0.5	12	4	2	35	4/0	120	750MCM	400
26	0.14	18	0.75	10	6	1	50	300MCM	150	1000MCM	500
24	0.25	17	1.0	8	10	1/0	55	350MCM	185		
22	0.34	16	1.5	6	16	2/0	70	500MCM	240		

Table 3-1: Conversion chart - wire size

Power Supply (Packages MP / VDEW / G59 / SC)

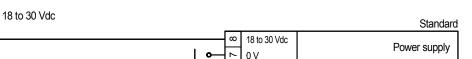


Figure 3-3: Power supply

Terminal	Description					
Standard power supply unit (Packages MP / VDEW / G59 / SC)						
8	18 to 30 Vdc	2.5 mm ²				
7	0 V reference point	2.5 mm ²				

Wide Range Power Supply (Packages NU / G59N / SC+N)

Power supply

wide-range power supply

wide-range power supply

power supply

power supply

Figure 3-4: Wide range power supply

Terminal	Description	A_{max}				
Wide range power supply unit (Packages NU / G59N / SC+N)						
8	90 to 265 Vac/dc	2.5 mm ²				
7	0 V reference point	2.5 mm ²				

Page 12/59 © Woodward

Measuring Inputs

Voltage

100/400 V version

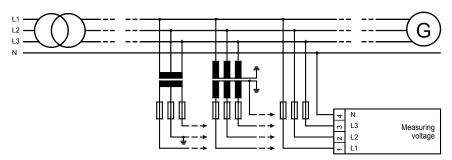


Figure 3-5: Measuring inputs - voltage 100/400 V versions

Terminal	Measurement	Description	A_{max}
1	400V direct	Measuring voltage L1	2.5 mm ²
2	or trans-	Measuring voltage L2	2.5 mm ²
3	former	Measuring voltage L3	2.5 mm ²
4	/100V	Neutral point of the 3-phase system/transformer	2.5 mm ²

690 V version

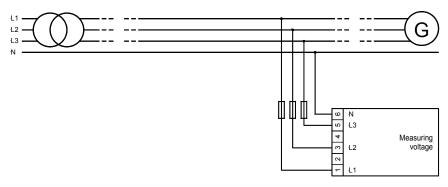


Figure 3-6: Measuring inputs - voltage, 690 V version

Terminal	Measurement	Description	A_{max}
1	- 690 V direct	Measuring voltage L1	2.5 mm ²
2		-N/A-	2.5 mm ²
3		Measuring voltage L2	2.5 mm ²
4		-N/A-	2.5 mm ²
5		Measuring voltage L3	2.5 mm ²
6		Neutral point of the 3-phase system/transformer	2.5 mm ²

© Woodward Page 13/59

Synchronizing Voltage (Packages SC & SC+N)

NOTE

Connection of the phase voltage L3 to terminal 72 (synchronizing voltage) is necessary if

- the generator voltage is connected as a three-wire-system and
- the power measurement of the generator power must be three-phase.

If the input for balancing the measuring system is not connected, minor inaccuracies will occur during the three-phase power measurement. Functionality will not be affected if the voltage L3 is not connected and the power measurement is configured as single-phase.

NOTE

The Packages SC & SC+N are not available for 690 V units.

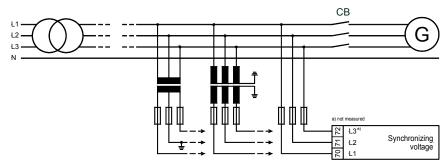


Figure 3-7: Measuring inputs - synchronizing voltage

	Terminal	Measurement	Description	A_{max}
Ī	70	400V direct	Synchronizing voltage L1	2.5 mm ²
	71	or via transf.	Synchronizing voltage L2	2.5 mm ²
	72	/100V	Synchronizing voltage L3 (not measured)	2.5 mm ²

Page 14/59 © Woodward

Discrete Inputs

NOTE

The subsequent input "Blocking of protective functions / remote acknowledgement" does not exist in the 690 V versions (refer to chapter Control Inputs on page 17.)

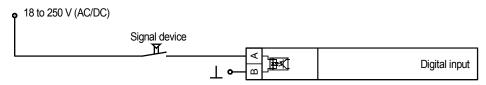


Figure 3-8: Discrete inputs

Terminal	Assigned	Description	A_{max}
	common	(according to DIN 40 719 Part 3, 5.8.3)	
A B			
5	6	Blocking of protective functions / remote acknowledgement (not in the 690 V-version)	2.5 mm ²

Outputs

Relay Outputs (Standard / Packages G59 & G59N)

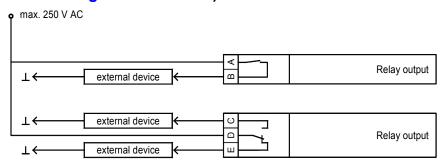


Figure 3-9: Relay outputs

Terminal			Description	
Make-contact				A _{max}
Root		closing		
$A \qquad \qquad B$		В		
9		10	Relay 1	2.5 mm ²
31		32	Relay 8 Packages G59 & G59N	2.5 mm ²
Chan	Change-over contact			
closing	Root	opening		
\boldsymbol{C}	D	E		
11	12	13	Relay 2	2.5 mm ²
14	15	16	Relay 3	2.5 mm ²
19	20	21	Relay 4 Packages G59 & G59N	2.5 mm ²
22	23	24	Relay 5 Packages G59 & G59N	2.5 mm ²
25	26	27	Relay 6 Packages G59 & G59N	2.5 mm ²
28	29	30	Relay 7 Packages G59 & G59N	2.5 mm ²

© Woodward Page 15/59

Interface

DPC - Direct Configuration Interface

NOTE

Configuration with the direct configuration cable DPC (P/N 5417-557) is possible. A laptop/PC, the DPC cable, the program LeoPC1 version 3.1.1 or higher (included on CD Rom with unit), and the proper configuration files are required. Please consult the online help installed when the program is installed for a description of the LeoPC1 program and its setup.

WARNING

Only the DPC cable may be connected to the DPC interface. If other devices or lines are connected, the unit may be destroyed. Especially the connection of live lines (like phone lines) will destroy the unit.

CAUTION

The connection cable delivered with the DPC must be used between DPC and the unit to ensure proper functionality of the unit. An extension or utilization of different cable types for the connection between the unit and DPC may result a malfunction of the unit. This may possibly result in damage to components of the system. If an extension of the data connection line is required, only the serial cable (RS-232) between DPC and laptop/PC may be extended. It is recommended to use an industry standard cable for this.

NOTE

If the parameter "Direct config." is enabled on the control, communication via the CAN bus interface on terminals X1/X5 is disabled.

If the control unit detects that the engine is running (ignition speed exceeded), the direct configuration port is disabled.

Page 16/59 © Woodward

Chapter 4. Functional Description

Control Inputs

NOTE

The subsequent input "Blocking of protective functions / remote acknowledgement" does not exist in the 690 V-version.

Blocking of protective functions / Remote acknowledgement Terminal 5/6 Energizing this discrete input disables various protective functions. This functionality may be desired if the control is used for generator protection. This keeps the control from recognizing fault conditions (i.e. undervoltage, underfrequency) when the generator is not operating. If blocking of these protective functions is not required, the discrete input should not be connected to any potential source.

The following protective functions <u>cannot</u> be blocked via this discrete input:

- Overvoltage monitoring
- Overfrequency monitoring
- Zero voltage monitoring

External acknowledgement of the relays via the discrete input "Blocking of protective functions / remote acknowledgement"

If the unit should not automatically reset the relays after the fault is no longer present, the parameter "Auto clearing Relays" must first be configured "OFF" (refer to "Auto Acknowledgement of the Relay" on page 42).

External Clearing (

OFF Alarms that cannot be blocked will not automatically reset after the fault condition is no longer present. Pressing the "Clear" button resets the relays.

© Woodward Page 17/59

Control Outputs

NOTE

A description of the relay manager may be found in Changing the Relay Assignment (Standard / Packages G59 & G59N) starting on page 44.

Relay 1 Output relay (type: make contact, NO)
Terminal 9/10 The "relay manager" controls this relay.

NOTE

The "ready for operation" function is always assigned to relay 1. However, other protective functions may also be assigned to relay 1 additionally. Relay 1 is always configured as Normally Closed (break contact) and will de-energize if the unit is not ready for operation.

Relay 2, 3 Output relay (type: change-over contact)
Terminal 11 through 16 The "relay manager" controls this relay.

NOTE

For units with Package SC, the synch-check function is assigned to relay 3. Therefore, relay 3 cannot be configured with the relay manager. If the parameter "2. Synch.Check relay 2" is configured to "ON", the synch-check function is also assigned to relay 2 and relay 2 cannot be configured with the relay manager (starting with SW version 3.1450).

Packages G59 & G59N
Relay 4 to 7
Terminal 19 through 30

Packages G59 & G59N
Relay 8
Terminal 31/32

Output relay (type: change-over contact)
The "relay manager" controls this relay.

Output relay (type: make contact, NO)
The "relay manager" controls this relay.

Page 18/59 © Woodward

Alarms

Alarm Messages

Table 4-1 contains a list of all alarm messages that the control may monitor for depending on how the unit is configured:

Alarm type		Alarm text
Overvoltage, level 1	Standard	Overvolt.1
Overvoltage, level 2	Standard	Overvolt.2
Undervoltage, level 1	Standard	Und.volt.1
Undervoltage, level 2	Standard	Und.volt.2
Asymmetry	Standard	Asymmetry
Overfrequency, level 1	Standard	Overfreq.1
Overfrequency, level 2	Standard	Overfreq.2
Underfrequency, level 1	Standard	Und.freq.1
Underfrequency, level 2	Standard	Und.freq.2
Vector/phase shift Pack	ages VDEW / G59 / G59N	Ph. shift
df/dt (ROCOF)	Packages G59 / G59N	Fault df

Table 4-1: Alarm messages

Alarm Acknowledgement

A fault/alarm is indicated by the "Alarm" LED.

By pressing the "Clear" button, the active faults are acknowledged. The following distinction is made between fault conditions:

The fault ...

• is still active As long as the fault is still present, it cannot be acknowledged. The flashing "Alarm"

LED on the front panel indicates that the alarm is still active.

• is no longer active When the active fault has been eliminated, the flashing "Alarm" LED changes to steady

illumination. If the parameter "Auto clearing displays" is configured "ON", the LED extinguishes after the resetting time has expired. If the parameter "Auto clearing displays" is configured "OFF", the LED is extinguished only after pressing the "Clear" button.

© Woodward Page 19/59

Chapter 5. Display and Operating Elements

The pressure-sensitive membrane of the front panel consists of a plastic coating. All keys have been designed as touch-sensitive membrane switch elements. The display is an LC-display, consisting of 2 rows of 16 characters each, with indirect green lighting. The contrast of the display can be infinitely adjusted via a rotary potentiometer positioned on the right side of the control. The configuration plug is located on the right side of the unit as well. Please connect the direct configuration cable there (DPC).

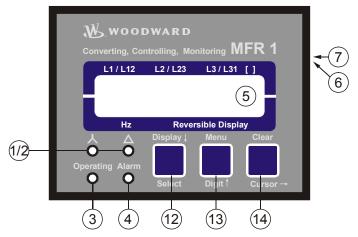


Figure 5-1: Front panel

Brief Description of LEDs and Push Buttons

LEDs

<u>N</u> o.	Description	Function
1	"Wye"	Indication of the wye (star) voltages
2	"Delta"	Indication of the delta voltages
3	"Operating"	Automatic mode
4	"Alarm"	Alarm occurred

Push Buttons

<u>N</u> o.	Description	Function
12	Display↓	Advance to next screen
12	Select	Confirm selection
13	Menu	Select menu
13	Digit↑	Increase the digit
14	Clear	Acknowledgement of alarm messages
14	Cursor→	Move cursor one position to the right

Miscellaneous

<u>N</u> o.	Description	Function Punction
5	LC Display	LC Display
6	Potentiometer	Adjust LCD contrast
7	DPC plug	Configuration plug

Page 20/59 © Woodward

LEDs

NOTE

If neither of the "Wye" and "Delta" LEDs is illuminated, the first line of the display indicates the wire current values.

1	''Wye'' Color: Yellow	Indication of the wye voltages
Color: renow		If this LED is illuminated, the values indicated on the display are the wye (star) voltages (phase-neutral).
2 "Delta"		Indication of the delta voltages
	Color: Yellow	If this LED is illuminated, the values indicated on the display are the delta voltages (phase-phase).
3	"Operation " Color: Green	Operation
	Color: Green	This LED is illuminated constantly when the control unit is in the Automatic mode. If this LED is flashing, the control is in the configuration mode.
4	"Alarm"	Alarm
	Color: Red	This LED flashes as long as a set point limit is exceeded. When all measuring values are below the configured set point limit again and "Auto clearing display" is configured "OFF", this LED will change to steady illumination.

© Woodward Page 21/59

Push Buttons

In order to facilitate the setting of the parameters the buttons are equipped with an "AUTOSCROLL" function while the controller is in the configuration mode. It permits the user to rapidly advance to the next setting and configuration screens, the digits, or the cursor position. The "AUTOSCROLL" function will only be enabled when the user presses and holds the corresponding buttons.

12 Display ↓ / Select Display ↓ / Select

Color: none

Automatic mode: Display \downarrow - By pressing this button, the user advances through the display of operating (wye voltages, delta voltages, wire currents) and alarm messages. The "Wye" and "Delta" LEDs are illuminated accordingly.

Configuration: Select - By pressing this button, the user advances to the next configuration screen. If the value originally displayed has been changed via the "Digit↑" or "Cursor→" push buttons, the newly set value is saved by pressing the "Select" push button once. By pressing the button again, the user causes the system to advance to the next configuration screen.

13 Menu / Digit

Menu / Digit

Color: none

Automatic mode: Menu - By pressing this button, the user advances through the messages displayed on the second line of the display. (Various measured values and any alarm messages that have not been cleared are indicated.)

Configuration: Digit \(\bar{\} \) - By pressing this button, the digit at which the cursor is presently located is increased by one digit. The increase is restricted by the permissible limits (see list of parameters included in Appendix D). If the highest permissible number has been reached, the number automatically returns to the lowest permissible number.

14 Clear / Cursor →

Clear / Cursor →

Color: none

Automatic mode: Clear - Individual alarm messages are deleted by pressing this button provided the fault is no longer present.

Configuration: Cursor → - This button moves the cursor one position to the right. When the cursor reaches the extreme right position it may be returned to the extreme left position by pressing the Cursor→ button again.

Page 22/59 © Woodward

LC Display

5 LC Display LC display

Performance values can be monitored from the two-line display, provided that the control is in automatic mode. In configuration mode, the individual parameters are displayed.

Display in Automatic Mode (First Line of the Display: Measured Values)

NOTE

The user can scroll through the first display line with the button "Display \downarrow ".

"Wye" = on, "Delta" = off Wye voltages

230	230	230 V

"Wye" = off, "Delta" = on Delta voltages

400	400	400 V

Display in automatic mode, first line: measured values

The following measured values are displayed (depending on the "Wye" and "Delta" LEDs):

- The "Wye" LED is illuminated, and the "Delta" LED is off.
 - The wye (star) voltages (V_{L1-N} , V_{L2-N} and V_{L3-N}) of the four-wire system are indicated. If the application is a three-wire system, the configuration screen "Volt.-
 - Measuring" must be configured to "phase to phase". The "Wye" LED will not illuminate in this application.
- The "Wye" LED is off and the "Delta" LED is illuminated. The delta voltages (V_{L1-L2} , V_{L2-L3} and V_{L3-L1}) of the phase-to-phase system/phase -
- The delta voltages (V_{L1-L2} , V_{L2-L3} and V_{L3-L1}) of the phase-to-phase system/phase neutral system are indicated.
- The "Wye" LED is off and the "Delta" LED is off.
 The phase currents (I_{L1}, I_{L2} and I_{L3}) are displayed

Display in Automatic Mode (Second Line of the Display: Measured Values)

NOTE

The "Menu" button may be used to scroll through the messages shown on the second line of the display.

00.00 xxxxxxxx

Display in automatic mode, second line: measured values

The frequency is always indicated in [Hz].

Instead of "xxxxxxxxx" the following measuring values are indicated:

Synchronizing voltage
 Synchronizing frequency
 Synchronizing angle
 Unit dynamic in [V / kV]
 Packages SC / SC+N
 Packages SC / SC+N
 Packages SC / SC+N
 Packages SC / SC+N
 Packages SC / SC+N

© Woodward Page 23/59

Display in Automatic Mode (Second Line of the Display: Alarm Indication)

NOTE

The user may scroll through the alarm messages that have occurred with the "Menu" button.

00.00 <u>yyyyyyyyy</u>

Display in automatic mode, second line: Alarm indication

Alarm messages are shown on the bottom line of the unit display. Table 5-1 contains a list of all alarm messages that the control may monitor for depending on how the unit is configured.

Alarm type		Alarm text
Overvoltage, level 1	Standard	Overvolt.1
Overvoltage, level 2	Standard	Overvolt.2
Undervoltage, level 1	Standard	Und.volt.1
Undervoltage, level 2	Standard	Und.volt.2
Asymmetry	Standard	Asymmetry
Overfrequency, level 1	Standard	Overfreq.1
Overfrequency, level 2	Standard	Overfreq.2
Underfrequency, level 1	Standard	Und.freq.1
Underfrequency, level 2	Standard	Und.freq.2
Vector/phase shift Packages VDEW / 0	G59 / G59N	Ph. shift
df/dt (ROCOF) Packages	G59 / G59N	Fault df

Table 5-1: Alarm messages

Page 24/59 © Woodward

Chapter 6. Configuration

Configuration can be performed via the front panel push buttons and the front panel LC display or using a PC and the PC program LeoPC1 via the serial interface. If direct configuration via a PC is selected, the following baud rate is to be used:

Configuration via direct configuration plug = 9,600 Baud (8 Bit, no parity, 1 stop bit)

CAUTION

Please note that configuration only should be done while the system is not in operation.

NOTE

A list of all parameters may be found in Appendix D of this manual.

You can advance through the individual parameter screens if you are in configuration mode (simultaneously pressing of "Digit\u2221" and "Cursor\u2222" push buttons permits access to the configuration mode) by using the "Select" button. If you press and hold the "Select" push button, the scroll function will be activated, allowing for the parameter screens to be advanced through more rapidly. The control unit will permit the operator to reverse up to four previous screens (exception: it is not possible to reverse from the first parameter to the last parameter). To perform the reverse function through the parameter screens, the "Select" and "Cursor\u2222" push buttons must be pressed and released simultaneously. The control unit will revert to automatic mode if an entry isn't performed, a change made, or any other action performed for 120 seconds.

NOTE

There are three different hardware versions described in this operating manual: A 100 V-version [1], a 400 V-version [4] and a 690 V-version [7]. The versions vary as far as the configuration screens and the parameter input ranges are concerned. The three types are differentiated by indicating the voltage: ([1] ..., [4] ... or [7] ...).

Adjust Settings: SELECT (ANWAHL)

Configuration mode

Button "Select"

After the configuration mode is enabled, the subsequent screens can be viewed and modified within the preset limits. Please note, that by depressing the "Select" button, the following screens are advanced by one screen each. If a parameter is configured "OFF", the related screens are not displayed or monitored by the control. Pressing the "Select" button will advance the displayed screen to the next parameter.

© Woodward Page 25/59

Basic Data

Software version x.xxxx

Software version

This screen displays the software version loaded into the control (the last two xx are for software revisions which do not affect the function of the unit).

SPRACHE/LANGUAGE

Language selection

Deutsch/English

The desired language for the controller to operate in is set by this parameter. The screens (configuration and display screens) can be displayed either in German or English.

Configuration Access

Password

The unit is equipped with a three-level code and configuration hierarchy, which allows different user access to the control. A distinction is made between:

Code level CS0 (User Level)

Factory password = none

This code level allows for monitoring of the system and does not permit access to the parameters. Configuration is blocked.

Code level CS1 (Basic Service Level)

Factory password = "**0 0 0 1**"

This code level entitles the user to change selected controller set points, enable auto-clearing display, and to reset the kWh counter. Changing a password is not permitted at this level. This password expires two hours after entering the password and the user is returned to the CS0 level.

Code level CS2 (Commissioning Level)

Factory password = "**0 0 0 2**"

Allows direct access to all parameters (displaying and changing). In addition, the user may also set the password for levels CS1 and CS2. This password expires two hours after entering the password and the user is returned to the CS0 level.

NOTE

Once the code level is set, it will not be changed even after entering the configuration repeatedly an incorrect code number has been entered, the code level is set to CS0, thus locking the device for external persons.

If for 2 hours uninterruptedly supply voltage is applied, the device automatically switches to code level 0.

Page 26/59 © Woodward

NOTE

The following configuration screen "Enter code number" only appears if the parameter "Password Protection" is configured "ON" (see below).

Enter code number 0000 Enter code number 0000 to 9999

Upon enabling the configuration mode, the user is required to enter an access code number, which identifies the various users. The displayed number XXXX is a randomly generated number (RN). If the random number is confirmed by pressing the "Select" button without being changed, the current level of access maintained. Upon entering either a level 1 or level 2 access code, the corresponding level of access is granted. If an incorrect access code is entered the control unit changes to code level 0 and all access is blocked until a code level 1 or 2 access code is entered.

Password Protection ON Password protection ON/OFF

ON......Password protection is enabled. Configuration access is granted by entering the appropriate password (Code level 1/2). If an incorrect code number has been entered, configuration is blocked.

OFF......Password protection is disabled. Access to configuration screens is permanently set to code level 2 and the code number is not queried. This parameter can only be changed if the code number of code level 2 has been entered.

Change Passwords

Define level 1 code 0000

Define level 1 password

0000 to 9999

This screen appears only when the level 2 password has been entered. After entering the digits into this screen, the code level for level 1 (basic service level) is set. After entering this code, the user only has the access rights assigned to this code level.

This code level (CS) is preset to CS1 = 0001

Define level 2 code 0000

Define level 2 password

0000 to 9999

This screen appears only when the level 2 password has been entered. After entering the digits into this screen, the code level for level 2 (comissioning level) is set. After entering the code, the user has the access rights with which he was assigned. This code level (CS) is preset to $CS2 = 0\ 0\ 2$

© Woodward Page 27/59

Direct Configuration

NOTE

A direct configuration cable DPC (P/N 5417-557), the LeoPC1 program (supplied with the cable) and the corresponding configuration files are required to perform direct configuration. After the program has been installed, consult the online help for a description of the PC program and its setup.

For configuration of the unit via PC program please proceed as follows:

- Install the PC program on your laptop/PC according to the installation manual.
- Before the end of the installation you are requested to select the language with which you want to start the PC program. You can change the language at any time. The selection of the language refers only to language with which the menus and subprograms of the PC program works. This setting will not change the language of the control unit being configured.
- After the installation of the PC program reboot your laptop/PC.
- Establish the connection between your laptop/PC and the unit via the DPC. Plug one side to the configuration plug of the unit and the other side to the COM1 port of your laptop/PC (other possibilities are described in the installation manual).
- You may start the PC program as follows:
 - by "Start/Program/Woodward/LeoPC" (starting at version 3.1.xxx), or
 - by a double click on a file ending ".cfg" in the subdirectory "LeoPC".
- After the PC program has been started, establish the communication by pressing the "F2" button. This will establish a data link between the unit and the laptop/PC.
- Start the sub program "Device Parameterization" and adjust the parameter of the unit to your application using this manual.

Direct parametr.	Direct configuration	YES/NO
YES	YESConfiguration via the configuration port is enabled. The forconditions must be met in order to carry out configuration rect configuration cable: - A connection must be established via the direct configuration between the unit and the PC - the Baud rate of the PC program must be set to 9,600 Bauten the corresponding configuration file must be used (file nature waxxxxxxxxyyy-zz.asm", initiated by xxxxxxxxxxyyy-zz.	via the di- ation cable ud ame:
	NO Configuration via the direct configuration port is disabled.	

Page 28/59 © Woodward

Measurement

WARNING

The following values must be entered correctly for the generator to be monitored. Failure to do so may lead to incorrect measuring of parameters resulting in damage to or destruction of the generator or switchgear and/or personal injury or death.

Voltage Measurement

Volt.-Measuring

Voltage measuring

Phase to phase/phase neutral

This screen only affects the displayed values. The protective functions are defined below. This parameter determines how the voltage is to be measured. If this parameter is set to "Phase to phase", the configuration screen "Volt.-Monitoring" in chapter Type of Monitoring on page 33 does not appear.

Potential Transformer Configuration

NOTE

The screens described below are not available in the 690 V versions.

Standard Units (not Packages SC & SC+N)

Volt.transformer secondary 000V

Potential transformer secondary

[1] 50 to 125 V; [4] 50 to 480 V

The potential transformer secondary voltage is set here in V. This parameter is utilized to calculate the system voltage in the display. For voltages measured without a potential transformer, secondary and primary voltage must be configured the same.

Volt.transformer primary 00.000kV

Potential transformer primary

00.100 to 65.000 kV

The potential transformer primary voltage is set here in kV. This entry is used to show the system voltage in the display.

Example: If a voltage of 400 V is measured without a potential transformer, the secondary transformer voltage must be configured to **400V** and the primary transformer voltage must be configured to **00.400V**.

© Woodward Page 29/59

Units with Packages SC & SC+N

Volt.transformer sec.(GN) 000V

Generator potential transformer secondary

[1] 50 to 125 V; [4] 50 to 480 V

The potential transformer secondary voltage is set here in V. This parameter is utilized to calculate the system voltage in the display. For voltages measured without a potential transformer, secondary and primary voltage must be configured the same.

Volt.transformer prim(GN)00.000kV

Generator potential transformer primary

00.100 to 65.000 kV

The potential transformer primary voltage is set here in kV. This entry is used to show the system voltage in the display.

Volt.transformer sec.(MN) 000V

Mains potential transformer secondary

[1] 50 to 125 V; [4] 50 to 480 V

The potential transformer secondary voltage is set here in V. This parameter is utilized to calculate the system voltage in the display. For voltages measured without a potential transformer, secondary and primary voltage must be configured the same.

Volt.transformer prim(MN)00.000kV

Mains potential transformer primary

00.100 to 65.000 kV

The potential transformer primary voltage is set here in kV. This entry is used to show the system voltage in the display.

Example: If a voltage of 400 V is measured without a potential transformer, the secondary transformer voltage must be configured to **400V** and the primary transformer voltage must be configured to **00.400V**.

Rated Values (Packages SC & SC+N)

NOTE

The Package SC is not available for 690 V units.

Rated voltage 000V

Rated voltage

[1] 5 to 125 V; [4] 10 to 480 V

This parameter defines the system rated voltage. This will affect the permissible limits for synchronization (refer to Synchronization (Packages SC & SC+N)" on page 31).

Rated frequency 00.0Hz

Rated frequency

40.0 to 70.0 Hz

Enter the rated frequency of the generator (or the utility mains), which in most cases is 50 Hz or 60 Hz. This will affect the permissible limits for synchronization (refer to Synchronization (Packages SC & SC+N)" on page 31).

Page 30/59 © Woodward

Control Functions

Synchronization (Packages SC & SC+N)

NOTE

The Package SC is not available for 690 V units; refer to Synchronizing Voltage (Packages SC & SC+N) on page 14.

Output of the Signal "Systems are Synchronous"

After the control unit monitors voltages and frequencies are within permissible limits, it will issue a circuit breaker closure command to connect two systems. The closure command has a predefined minimum on time that is output to a relay. Relay 3 is dedicated to this function. Relay 2 can also be assigned with this function for redundancy purposes starting with SW version 3.1450.

The maximum permissible limits are:

- Generator System (GN): 75% to 112.5% of the rated voltage
- Mains System (MN): 87% to 112.5% of the rated voltage

Function "Synchronization of systems"

The control unit calculates internally the electrical angle of advance to issue the circuit breaker closure command. The corresponding lead-time remains constant due to the inherent delay of the breaker regardless of the frequency differential of the two systems. If the voltage and frequency differential of the two systems are within permissible limits, the breaker closure command may be issued under the following conditions:

- The respective monitored voltages of the two systems must be greater than 75 % and less than 112.5 % if the configured rated voltage.
- The monitored voltage differential of the two systems must fall below the configured maximum permissible voltage differential.
- The monitored frequency differential of the two systems must fall below the configured maximum permissible frequency differential
- The electrical angle between two coincident phases must be smaller than the respective permissible error angle (slip-dependent, max. 8 °elec.).

Synchronous Networks

A network is considered as synchronous if the frequency difference between the systems is less than 0.02134 Hz. The unit also issues a breaker closure order for synchronous networks, as long as the electrical angle between the two systems does not exceed the maximum permissible phase angle and the monitored voltage differential is less than the configured maximum permissible voltage differential.

© Woodward Page 31/59

Configuration Screens

Synchronizing	
functions	ON

Synchronizing functions

ON/OFF

ON.....Synchronizing functions have been enabled, and the subsequent screens of this function are displayed.

OFFSynchronizing functions have been disabled, and the subsequent screens of this function are not displayed.

Synchronization df max 0.00Hz

Maximum permissible positive slip frequency differential for synchr. 0.02 to 0.49 Hz

This parameter defines the upper permissible frequency differential limit for synchronization. Prior to the control issuing a breaker closure command, the monitored frequency differential of the two systems must be less than the value configured here.

Positive slip refers to the System (GN) frequency being greater than the System (MN) frequency.

Synchronization df min -0.00Hz

Maximum permissible negative slip frequency differential for synchr. 0.00 to -0.49 Hz

This parameter defines the lower permissible frequency differential limit for synchronization. Prior to the control issuing a breaker closure command, the monitored frequency differential of the two systems must be greater than the value configured here.

Negative slip refers to the System (GN) frequency being less than the System (MN) frequency.

Synchronization dV max = 00.0%

Maximum permissible voltage differential

0.1 to 15.0 %

A close command will not be issued until the measured differential voltage of the two systems is less than value configured here. An internal hysteresis of 12.5% of the value configured will be applied to eliminate relay chatter. The percentage configured here is a + or - value.

Synchronization
Max phase < 00

Maximum permissible phase angle

 $1 \text{ to } 60^{\circ}$

The phase angle in synchronous networks must not exceed the value configured here to be able to energize the closing relay. If the value configured here is between 55° and 60° , the closing relay will not energize until the phase angle falls below 55° , but it will remain energized until the phase angle exceeds the configured value even if it is between 55° and 60° .

Synchronization
Time pulse>000ms

Minimum pulse time of the breaker close relay

50 to 250 ms

The duration of the breaker closure command is defined by this parameter. The length of the pulse can be adjusted to the requirements of the individual breaker. The configured value defines the minimum on time of the pulse.

Gen.circ.breaker Pick-up t. 000ms

Breaker inherent delay

40 to 300 ms

All breakers have an inherent delay. This is the time from when the closure command is issued until the breaker contacts are closed. This parameter defines that time. The control unit uses the time value configured here to determine when the breaker closure command is issued independent of the frequency differential. This permits the breaker contacts to close as close as possible to the synchronous point.

Page 32/59 © Woodward

Type of Monitoring

NOTE

The following screen will not be displayed, if the parameter "Volt.-Measuring" is configured to "Phase to phase" power measurement (refer to Voltage Measurement on page 29).

Volt. Monitoring

Monitoring for

Phase-neutral/Phase to phase

The unit can either monitor the phase-neutral voltages (four-wire system) or the phase-phase voltages (three-wire system). Usually, for low-voltage system (400/690V-version) the phase-neutral voltages are monitored, while for the medium and high-voltage systems (100 V-version), the phase-phase voltages are monitored. The monitoring of the phase-phase voltages is recommended to avoid a phase-earth fault in a compensated or isolated mains resulting in the voltage protection tripping. The only effect on the screen "Voltage measuring" is the one described in the above note. The settings in the screen "Voltage measuring" do have the following effects on the configuration screens:

Phase-neutral The voltage at the terminals 1/2/3/4 (or 1/3/5/6 for 690 V versions) is measured as a four-wire installation. All subsequent screens concerning voltage measuring refer to phase-neutral voltage (V_{Ph-N}). This is indicated in the configuration screens by the supplement [Phase-N].

Phase to phase If the voltage system connected to the terminals 1/2/3/4 (or 1/3/5/6 for 690 V versions) is a three-wire system, this setting must be selected. All subsequent screens concerning voltage measuring refer to phase-phase voltage (V_{Ph-Ph}). In the configuration screens, this is indicated by the supplement [V(ph-ph)].

© Woodward Page 33/59

Protection

Overvoltage Monitoring

Function: "Voltage not within permissible limits"

The monitored voltage in at least one phase is not within the configured permissible limits for overvoltage. The alarm message "Overvolt.1" or "Overvolt.2" will be displayed. This message cannot be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

Overvoltage Monitoring ON

Overvoltage monitoring

ON/OFF

ONOvervoltage monitoring is enabled. The subsequent screens of this function are displayed.

OFFOvervoltage monitoring is disabled. The subsequent screens of this

function are not displayed.

Screen for Phase-neutral

Overvoltage 1 (Phase-N) >000V

Screen for Phase to phase:

Overvoltage 1 V(ph-ph) >000V Threshold overvoltage level 1

(Phase-phase) [1] 20 to 150 V; [4] 20 to 520 V; [7] 20 to 900 V (Phase-neutral) [1] 10 to 87 V; [4] 10 to 300 V; [7] 10 to 520 V

Overvoltage (level 1) is defined by this parameter. If this limit is reached or exceeded, the unit outputs the message "Overvolt.1". If a relay was assigned to this function in the relay manager, that relay will be energized.

Overvoltage 1 Delay 00.00s

Pickup delay, level 1

0.02 to 99.98 s

In order to initiate an overvoltage (level 1) alarm, the measured voltage must exceed and remain above the configured threshold without interruption for at least the period of time specified in this screen.

Screen for Phase-neutral:

Overvoltage 2 (Phase-N) >000V

Screen for Phase to phase:

Overvoltage 2 V(ph-ph) >000V Threshold (Phase-phase) [1] 20 to 150 V; [4] 20 to 520 V; [7] 20 to 900 V overvoltage level 2 (Phase-neutral) [1] 10 to 87 V; [4] 10 to 300 V; [7] 10 to 520 V

Overvoltage (level 2) is defined by this parameter. If this limit is reached or exceeded, the unit outputs the message "Overvolt.2". If a relay was assigned to this function in the relay manager, that relay will be energized.

Overvoltage 2 Delay 00.00s

Pickup delay, level 2

 $0.02\ to\ 99.98\ s$

In order to initiate an overvoltage (level 2) alarm, the measured voltage must exceed and remain above the configured threshold without interruption for at least the period of time specified in this screen.

Overvoltage Hysteresis 00V

Hysteresis for the overvoltage monitoring, levels 1 + 2

0 to 99 V

In order to prevent system fluctuations from continually initiating overvoltage alarms (both levels), a lower release point is defined here. If the control monitors the voltage above the permissible limit, the voltage must drop below that threshold and the voltage level defined here for the fault condition to be recognized as no longer existing.

Example: If a 480 V system has an overvoltage limit of 510 V and a hysteresis of 10 V, the monitored voltage for an overvoltage alarm must drop below 500 V to reset the alarm.

Page 34/59 © Woodward

Undervoltage Monitoring

Function: "Voltage not within permissible limits"

The monitored voltage in at least one phase is not within the configured permissible limits for undervoltage. The alarm message "Und.volt.1" or "Und.volt.2" will be displayed. This message cannot be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

Undervoltage Monitoring ON

Undervoltage monitoring

ON/OFF

ON.....Undervoltage monitoring is enabled. The subsequent screens of this function are displayed.

OFF......Undervoltage monitoring is disabled. The subsequent screens of this function are not displayed.

Screen for Phase-neutral:

Undervoltage 1 (Phase-N) <000V

Screen for Phase to phase:

Undervoltage 1 V(ph-ph) <000V Threshold undervoltage level 1

(Phase-phase) [1] 20 to 150 V; [4] 20 to 520 V; [7] 20 to 900 V (Phase-neutral) [1] 10 to 87 V; [4] 10 to 300 V; [7] 10 to 520 V

Undervoltage (level 1) is defined by this parameter. If this limit is reached or fallen below, the unit outputs the message " Und.volt.1". If a relay was assigned to this function in the relay manager, that relay will be energized.

Undervoltage 1 Delay 00.00s

Pickup delay, level 1

0.02 to 99.98 s

In order to initiate an undervoltage (level 1) alarm, the measured voltage must fall below and remain below the configured threshold without interruption for at least the period of time specified in this screen.

Screen for Phase-neutral:

Undervoltage 2 (Phase-N) <000V

Screen for Phase to phase:

Undervoltage 2 V(ph-ph) <000V Threshold undervoltage level 2

(Phase-phase) [1] 20 to 150 V; [4] 20 to 520 V; [7] 20 to 900 V (Phase-neutral) [1] 10 to 87 V; [4] 10 to 300 V; [7] 10 to 520 V

Undervoltage (level 2) is defined by this parameter. If this limit is reached or fallen below, the unit outputs the message " **Und.volt.2**". If a relay was assigned to this function in the relay manager, that relay will be energized.

Undervoltage 2 Delay 00.00s

Pickup delay, level 2

0.02 to 99.98 s

In order to initiate an undervoltage (level 2) alarm, the measured voltage must fall below and remain below the configured threshold without interruption for at least the period of time specified in this screen.

Undervoltage Hysteresis 00V

Hysteresis for the undervoltage monitoring, levels 1 + 2

0 to 99 V

In order to prevent system fluctuations from continually initiating undervoltage alarms (both levels), a higher release point is defined here. If the control monitors the voltage below the permissible limit, the voltage must rise above that threshold and the voltage level defined here for the fault condition to be recognized as no longer existing.

Example: If a 480 V system has an undervoltage limit of 440 V and a hysteresis of 10 V, the monitored voltage for an overvoltage alarm must rise above 450 V to reset the alarm.

© Woodward Page 35/59

Zero Voltage Monitoring (Packages SC & SC+N)

Function: "Voltage within permissible limits"

All three phases of the measured voltages are below the configured limit for a zero voltage condition. This function may be used for dead bus detection and as a release signal to permit dead bus closure of the circuit breaker. This message **cannot** be blocked with the discrete input "Blocking of protective functions / remote acknowledgement". The control unit does not display a message for this condition.

Zero-voltage Monitoring ON

Zero voltage monitoring

ON/OFF

ON.....Zero voltage monitoring is enabled. The subsequent screens of this function are displayed.

OFFZero voltage monitoring is disabled. The subsequent screens of this function are not displayed.

Zero-voltage

Monitoring type of the zero voltage monitoring

Busbar 1ph / Generator 3ph

Busbar 1ph ..Zero voltage monitoring is performed by measuring two phases on the busbar.

Generator 3ph Zero voltage monitoring is performed by measuring three phases on the generator.

Screen for Phase-neutral:

Zero-voltage V(Phase-N) <000V

Screen for Phase to phase:

Zero-voltage V(ph-ph) <000V Threshold zero voltage

(Phase-phase) [1] 3 to 150 V; [4] 12 to 520 V (Phase-neutral) [1] 2 to 87 V; [4] 6 to 300 V

The threshold for detecting a zero voltage condition is defined by this parameter. If this limit is reached or fallen below, the unit does not display a message. If a relay was assigned to this function in the relay manager, that relay will be energized.

Zero-voltage Delay 00.00s

Pickup delay

0.02 to 99.98 s

In order for the control to recognize a zero voltage condition, the measured voltage must fall below and remain below the configured threshold without interruption for at least the period of time specified in this screen.

Zero-voltage Hysteresis 00V

Hysteresis for the zero voltage monitoring

0 to 99 V

In order to prevent system fluctuations from continually initiating a zero voltage condition, a higher release point is defined here. If the control monitors the voltage below the permissible limit, the voltage must rise above that threshold plus the voltage level defined here for the fault condition to be recognized as no longer existing.

Release delay Zerovolt. 00.00s

Delay release

0.02 to 99.98 s

To ensure that the signal relay resets after a zero voltage conditions has occurred, the zero voltage threshold (including the hysteresis) must be exceeded without interruption for the time specified by this parameter. The control will autoacknowledge a zero voltage condition regardless of how "Autoclearing Relays" is configured.

NOTE

A message is not displayed on the screen for zero voltage conditions.

Page 36/59 © Woodward

Voltage Asymmetry Monitoring

The phase-phase voltages are monitored.

Function "Voltage asymmetry not within permissible limits"

The monitored phase-phase voltage differential in the three phases is not within the configured permissible limits for asymmetry (asymmetric voltage vectors; the threshold corresponding to the differential value). The alarm message "Asymmetry" will be displayed. This message can be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

Asymmetry-Monitoring ON

Asymmetry monitoring

ON/OFF

ON.....Voltage asymmetry monitoring is enabled. The subsequent screens of this function are displayed.

OFF.....Voltage asymmetry monitoring is disabled. The subsequent screens of this function are not displayed.

Asymmetry Response v. 00V.

Maximum permissible asymmetry

0 to 99 V

The maximum voltage asymmetry is defined by this parameter. If this limit is reached or exceeded, the unit outputs the message "Asymmetry". If a relay was assigned to this function in the relay manager, that relay will be energized.

Asymmetry Delay 00.00s

Pickup delay

0.02 to 99.98 s

In order to initiate a voltage asymmetry alarm, the measured voltage differential must rise above and remain above the configured threshold without interruption for at least the period of time specified in this screen.

Asymmetry Hysteresis 00V

Hysteresis for the asymmetry monitoring

0 to 99 V

In order to prevent system fluctuations from continually initiating a voltage asymmetry fault, a lower release point is defined here. If the control monitors the voltage asymmetry beyond the permissible limit, the voltage differential must fall below that threshold plus the voltage level defined here for the fault condition to be recognized as no longer existing.

© Woodward Page 37/59

Overfrequency Monitoring

The monitoring of the frequency is carried out on two levels. The frequency measuring is monitored three-phase if all voltages are greater than 15 % of the rated value (100 V or 400 V). This ensures quick and precise measurement of the frequency. The frequency is still monitored correctly even if voltage is only applied to one phase.

Function "Frequency not within permissible limits"

The monitored frequency is not within the configured permissible limits for overfrequency. The alarm message "Overfreq.1" or "Overfreq.2" will be displayed. This message cannot be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

Overfrequen	cy-
Monitoring	ON

Overfrequency monitoring

ON/OFF

ONOverfrequency monitoring is enabled. The subsequent screens of this function are indicated.

OFFOverfrequency monitoring is disabled. The subsequent screens of this function are not displayed.

Overfrequency 1 f > 00.00Hz

Threshold overfrequency, level 1

40.00 to 80.00 Hz

Overfrequency (level 1) is defined by this parameter. If this limit is reached or exceeded, the unit outputs the message "Overfreq.1". If a relay was assigned to this function in the relay manager, that relay will be energized.

Overfrequency 1
Delay 00.00s

Pickup delay, level 1

0.02 to 99.98 s

In order to initiate an overfrequency (level 1) alarm, the measured frequency must exceed and remain above the configured threshold without interruption for at least the period of time specified in this screen.

Overfrequency 2 f > 00.00Hz

Threshold overfrequency, level 2

40.00 to 80.00 Hz

Overfrequency (level 2) is defined by this parameter. If this limit is reached or exceeded, the unit outputs the message "Overfreq.2". If a relay was assigned to this function in the relay manager, that relay will be energized.

Overfrequency 2 Delay 00.00s

Pickup delay, level 2

0.02 to 99.98 s

In order to initiate an overfrequency (level 2) alarm, the measured frequency must exceed and remain above the configured threshold without interruption for at least the period of time specified in this screen.

Overfrequency
Hysteres. 0.00Hz

Hysteresis for the overfrequency monitoring, levels 1+2

0.01 to 9.99 Hz

In order to prevent system fluctuations from continually initiating overfrequency alarms (both levels), a lower release point is defined here. If the control monitors the frequency above the permissible limit, the frequency must drop below that threshold and the frequency level defined here for the fault condition to be recognized as no longer existing.

Example: If a 60 Hz system has an overfrequency limit of 70 Hz and a hysteresis of 5 Hz, the monitored frequency for an overfrequency alarm must fall below 65 Hz to reset the alarm.

Page 38/59 © Woodward

Underfrequency Monitoring

The monitoring of the frequency is carried out on two levels. The frequency measuring is monitored three-phase if all voltages are greater than 15 % of the rated value (100 V or 400 V). This ensures quick and precise measurement of the frequency. The frequency is still monitored correctly even if voltage is only applied to one phase.

Function "Frequency not within permissible limits"

The monitored frequency is not within the configured permissible limits for overfrequency. The alarm message "Und.freq.1" or "Und.freq.2" will be displayed. This message can be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

Underfreque	ncy-
Monitoring	ON

Underfrequency monitoring

ON/OFF

ON......Underfrequency monitoring is enabled. The subsequent screens of this function are indicated.

OFF..... Underfrequency monitoring is disabled. The subsequent screens of this function are not displayed.

Underfrequency 1 f < 00.00Hz

Threshold underfrequency, level 1

40.00 to 80.00 Hz

Underfrequency (level 1) is defined by this parameter. If this limit is reached or fallen below, the unit outputs the message "Und.freq.1". If a relay was assigned to this function in the relay manager, that relay will be energized.

Underfrequency 1 Delay 00.00s

Pickup delay, level 1

0.02 to 99.98 s

In order to initiate an underfrequency (level 1) alarm, the measured frequency must fall below and remain below the configured threshold without interruption for at least the period of time specified in this screen.

Underfrequency 2 f < 00.00Hz

Threshold underfrequency, level 2

40.00 to 80.00 Hz

Underfrequency (level 2) is defined by this parameter. If this limit is reached or fallen below, the unit outputs the message "Und.freq.2". If a relay was assigned to this function in the relay manager, that relay will be energized.

Underfrequency 2 Delay 00.00s

Pickup delay, level 2

0.02 to 99.98 s

In order to initiate an underfrequency (level 2) alarm, the measured frequency must fall below and remain below the configured threshold without interruption for at least the period of time specified in this screen.

Underfrequency Hysteres. 0.00Hz

Hysteresis for the underfrequency monitoring, levels 1 + 2

0.01 to 9.99 Hz

In order to prevent system fluctuations from continually initiating underfrequency alarms (both levels), a higher release point is defined here. If the control monitors the frequency below the permissible limit, the frequency must rise above that threshold and the frequency level defined here for the fault condition to be recognized as no longer existing.

Example: If a 60 Hz system has an underfrequency limit of 50 Hz and a hysteresis of 5 Hz, the monitored frequency for an overfrequency alarm must rise above 55 Hz to reset the alarm.

© Woodward Page 39/59

Vector / Phase Shift Monitoring (Packages VDEW / G59 / G59N)

A vector/phase shift is defined as the sudden variation of the voltage curve which may be caused by a major generator load change. The control unit measuring circuit detects the change in the cycle duration. This change in the cycle duration is compared with a mean value calculated from previous measurements. The monitoring may be carried out three-phased or one/three-phased. The threshold in degrees indicates the time difference between the mean value and the instantaneous value, referring to the duration of a full cycle. The monitoring can be configured in different ways. The vector/phase shift monitor can also be used as an additional method to decouple from the mains. Vector/phase shift monitoring is only enabled after the monitored voltage exceeds 70% of the PT secondary rated voltage.

Function: "Cycle duration of the voltage not within permissible limits"

The voltage cycle duration is not within the configured vector/phase shift limits. The alarm message "Ph. shift" appears. This message can be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

Phase jump monitoring ON

Vector/phase shift monitoring

ON/OFF

ONVector/phase shift monitoring is enabled. The voltage/frequency cycle duration is being monitored to ensure it does not exceed the defined limits. The subsequent screens of this function are displayed.

OFFVector/phase shift monitoring is disabled, and the subsequent screens of this function are not displayed.

Phase jump monit

Vector/phase shift monitoring

one/three phase / 3 phase only

one/three phase: An alarm will be issued if the phase angle in any one phase exceeds the configured phase shift phase angle limit. Monitoring of single-phase voltage is exceptionally sensitive and may lead to nuisance tripping if the configured phase angle is to low.

3 phase only: An alarm will be issued if the phase angle in all three phases exceeds the configured phase shift phase angle limit within two waveforms.

NOTE

If the monitoring is configured as "3 phase only", only one of the two subsequent screens will be displayed. If the monitoring is configured as "one/three-phase", both configuration screens will be displayed.

Phase-jump value (One phase) 00°

This screen is only visible if monitoring is configured "one/three phase".

Vector/phase shift monitoring phase angle, single-phase

2 to 90 °

An alarm will be issued if the phase angle in any one phase exceeds the configured phase shift phase angle limit. If the monitored voltage/frequency reaches or exceeds the phase shift limit, the unit outputs the message "Ph. shift". If a relay was assigned to this function in the relay manager, that relay will be energized.

Phase-jump value (3-phase) 00°

Vector/phase shift monitoring phase angle, three-phased

2 to 90 $^{\circ}$

An alarm will be issued if the phase angle in any all three phases exceeds the configured phase shift phase angle limit. If the monitored voltage/frequency reaches or exceeds the phase shift limit, the unit outputs the message "Ph. shift". If a relay was assigned to this function in the relay manager, that relay will be energized.

Page 40/59 © Woodward

df/dt (ROCOF) Monitoring (Packages G59 & G59N)

Function: "Rate Of Change Of Frequency (ROCOF) is not within permissible limits"

Rate of Change Of Frequency (ROCOF) monitoring measures the stability of the frequency. The frequency of a generator will vary due to changing loads and compensation of the fuel system. The rate of these frequency changes due to the load variances is relatively high compared to those of a large network. The control unit calculates the unit of measure per unit of time. The df/dt is measured over 4 sine waves to ensure that it is differentiated from a phase shift. This results in a response time of approximately 100ms. This message can be suppressed with the discrete input "Blocking of protective functions / remote acknowledgement".

df/dt-	
Monitoring	ON

df/dt monitoring ON/OFF

OFF.....Rate Of Change Of Frequency monitoring is disabled. The subsequent screens of this function are not displayed.

df/dt Response>0.0Hz/s

Tripping df/dt 1.0 to 9.9 Hz/s

The Rate Of Change Of Frequency threshold is defined by this parameter. If this limit is reached or exceeded, the unit outputs the message "Fault df". If a relay was assigned to this function in the relay manager, that relay will be energized.

df/dt Delay T= 0.0s Pickup delay 0.1 to 9.9 s

In order to initiate a Rate Of Change Of Frequency alarm, the measured df/dt must exceed and remain above the configured threshold without interruption for at least the period of time specified in this screen.

© Woodward Page 41/59

Relay Configuration

NOTE

Clearing of faults and fault messages from the control unit will depend on the parameters "External clearing", "Auto-clearing Relays", and "Auto-clearing Display". These three parameters will influence the other depending on how each is configured. This is explained in the following text.

External Clearing ON

External acknowledgement of the relays via the discrete input
"Blocking of protective functions
/ remote acknowledgement".

Acknowledgement via the discrete input

ON/OFF

"Auto-clearing Relays" configured "OFF" (refer to "Auto Acknowledgement of the Relay" on page 42):

OFFAlarms that cannot be blocked with discrete input "Blocking of protective functions / remote acknowledgement" will not be reset when the fault condition is no longer present. Pressing the "Clear" button resets the relays.

"Auto-clearing Relays" configured "ON" (refer to "Auto Acknowledgement of the Relay" on page 42):

Auto Acknowledgement of the Relays

Auto-clearing Relays ON Relay auto acknowledgment

ON/OFF

ONAutomatic clearing of the relays is enabled. The relays are automatically reset when the fault condition is no longer detected. The alarm message in the display is cleared according to how the parameter "Auto-clearing Display" is configured.

OFFAutomatic clearing of the relays is disabled. Pressing the "Clear" button resets the relays.

The alarm message in the display is cleared according to how the parameter "Auto-clearing Display" is configured. The subsequent screens of this function are not indicated.

Page 42/59 © Woodward

NOTE

The subsequent screens are only visible if the parameter "Auto-clearing Relays" and the corresponding protective function are enabled and the control unit is equipped with the protective functionality.

Release delay xxxxxxxxx 00.00s

Release delay of the relays

0.02 to 99.98 s

The individual relays will reset if "Auto-clearing relays" has been enabled and the monitored values have returned to the permissible limits plus / minus the hysteresis (depending on monitoring) without interruption for the time specified in this parameter. If the monitored value exceeds / falls below the threshold limit, the delay timer re-initiates its countdown. The following protective functions may have reset delays configured.

Monitoring for		Display indication instead of	Remark
		XXXXXXX	
Zero voltage	Package SC / SC+N	Zerovolt.	no display message issued
Overvoltage	Standard	Overvolt.	Overvoltage level 1 and 2
Undervoltage	Standard	Und.volt.	Undervoltage level 1 and 2
Asymmetry	Standard	Asymmetry	
Overfrequency	Standard	Overfreq.	Overfrequency level 1 and 2
Underfrequency	Standard	Underfrq.	Underfrequency level 1 and 2
Vector/phase shift	Packages VDEW / G59 / G59N	Phase jmp	
df/dt (ROCOF)	Packages G59 / G59N	df/dt	

Table 6-1: Release delay of the relays

Auto Acknowledgement of Messages

Auto-cleari	ng
Display	ON

Messages auto acknowledgment

ON/OFF

ON..... After the alarm condition is no longer detected, the message on the display is deleted.

OFF..... The alarm message remains in the display after the fault condition is no longer detected until manually cleared. The subsequent screen of this function is not displayed.

NOTE

The subsequent parameter "Clearing display after "is not visible if "Auto-clearing Relays" is configured to "OFF".

Clearing display after 00s

Clear displayed message delay

1 to 99 s

Alarm messages, which have been enabled, will be acknowledged after this configured delay time expires. This delay will initiate once the measure value exceeds/falls below the threshold limit +/- the hysteresis

© Woodward Page 43/59

Changing the Relay Assignment (Standard / Packages G59 & G59N)

Change relayallocation? YES

Change relay assignment?

YES/NO

This parameter permits the user to change how the relay outputs are configured. Refer to the list of parameters.

YESThe relay assignments can be configured and the user may define the relay functionality and assignments. The subsequent screens are displayed.

NOThe relays are configured with the factory default settings. The subsequent screens are not displayed.

NOTE

All relay outputs are configured the same. The following is an example showing relays 1 through 3. Depending on the model purchased, the unit may have up to 7 configurable relays. The Packages G59 & G59N enable to use 5 additional relays.

Example: Relay 1 to 3

Funct. relay 123 (R=releases) RRR

Function of the relays 1, 2, and 3

E/R

The individual relays may be configured as either E=Energizes (Normally Open contacts) or R=Releases (Normally Closed contacts).

EThe relay is configured as normally open (N.O.) contacts. The relay will energize only if the assigned monitoring function has tripped.

RThe relay is configured as normally closed (N.C.) contacts. The relay is always energized and will only de-energize (release) if the assigned monitoring function has tripped.

NOTE Relay 1 is configured as R (release/N.C.) and cannot be modified.

NOTE

The Packages SC & SC+N do not enable to configure the function of relay 3. The synch-check function is always assigned to relay 3. Relay 3 is fixed to N.O. For reasons of redundancy, the synch-check function may also be assigned to relay 2 with the following parameter starting with SW version 3.1450.

2. Synch.Check relay 2 OFF

only available for SC & SC+N Packages starting with SW version 3.1450 2nd Synch-check triggering assigned to relay 2

ON/OFF

This parameter permits the user to assign the synch-check function to relay 2 as well for reasons of redundancy.

ON.....The synch-check function is assigned to relay 3 **and** relay 2. No monitoring function may be assigned to relay 2.

OFFThe synch-check function is only assigned to relay 3. Relay 2 may be used for other monitoring functions.

CAUTION

If above parameter is configured to "ON" and a monitoring function is assigned to relay 2, relay 2 will not react if this monitoring function is triggered.

Page 44/59 © Woodward

NOTE

The following screen(s) will only be displayed if the unit is equipped with the corresponding protective function(s), the protective function is enabled, and the parameter "Change relay allocation" is enabled.

xxxxxxxxx	xxxxx
to relay	0000

Assign protective function output to relays

0 to 4/8

Each digit in this parameter is used to assign one relay to a protective function. Up to four relay outputs may be assigned to a protective function. The control may be configured as follows:

4/5/6/7/8 Relay 4 (terminals 19/20/21), relay 5 (terminals 22/23/24), relay 6 (terminals 25/26/27), relay 7 (terminals 28/29/30), and/or relay 8 (terminals 31/32) are available for assignment to protective function if the unit is equipped with either the G59 or G59N Packages.

Example...... An MFR 11/G59 has a protective function that is required to output a signal to relays 2,4, and 7. That protective function relay assignment should be configured as 2470. The sequence of the numbers has no significance in the functionality or operations.

A relay output may be assigned to more than one protective function. This will cause the relay to issue a signal when any of the configured protective functions trip. If a relay should only issue a signal when a specific protective function trips, then the relay must not be assigned to any other protective function.

Monitoring of output to r	elay	Indication on display instead of
		XXXXXXXX
Overvoltage, level 1	Standard	Overvoltage 1
Overvoltage, level 2	Standard	Overvoltage 2
Undervoltage, level 1	Standard	Undervoltage 1
Undervoltage, level 2	Standard	Undervoltage 2
Zero voltage	Packages SC / SC+N	Zero-voltage
Asymmetry	Standard	Asymmetry
Overfrequency, level 1	Standard	Overfrequency 1
Overfrequency, level 2	Standard	Overfrequency 2
Underfrequency, level 1	Standard	Underfrequency 1
Underfrequency, level 2	Standard	Underfrequency 2
Vector/phase shift Pa	ckages VDEW / G59 / G59N	Phase jump
df/dt (ROCOF)	Packages G59 / G59N	df/dt
Centralized alarm		Collect Response

Table 6-2: Protective function output to relay

NOTE

The "ready for operation" function is always assigned to relay 1. However, other protective functions may also be assigned to relay 1 additionally. Relay 1 is always configured as Normally Closed (break contact) and will de-energize if the unit is not ready for operation.

© Woodward Page 45/59

Chapter 7. Commissioning

DANGER - HIGH VOLTAGE

When commissioning the control, please observe all safety rules that apply to the handling of live equipment. Ensure that you know how to provide first aid in the event of an uncontrolled release of energy and that you know where the first aid kit and the nearest telephone are. Never touch any live components of the system or on the back of the system:

LIFE THREATENING

CAUTION

Only a qualified technician may commission unit. The "EMERGENCY-STOP" function must be operational prior to commissioning of the system, and must not depend on the unit for its operation.

CAUTION

Prior to commissioning ensure that all measuring devices are connected in correct phase sequence. The connect command for the unit circuit breaker must be disconnected at the unit circuit breaker. The field rotation must be monitored for proper rotation. Any absence of or incorrect connection of voltage measuring devices or other signals may lead to malfunctions and damage the unit, the engine, and/or components connected to the unit!

Procedure

- 1. After wiring the unit and ensuring all voltage-measuring devices are phased correctly, apply the control system voltage (i.e. 24 Vdc). The "Operation" LED will illuminate.
- 2. By simultaneously pressing the two push buttons "Digit↑" and "Cursor→", the configuration mode is accessed. After entering the access code number, the unit may be configured according to the application requirements (see the chapter regarding the parameters).
- After applying the measured variables, the unit will display the measured values. These values should be confirmed with a calibrated measuring instrument.
- 4. After the unit has been configured for the application, the configuration mode is exited by simultaneously pressing the "Digit↑" and "Cursor→" buttons.

Page 46/59 © Woodward

Appendix A. Dimensions

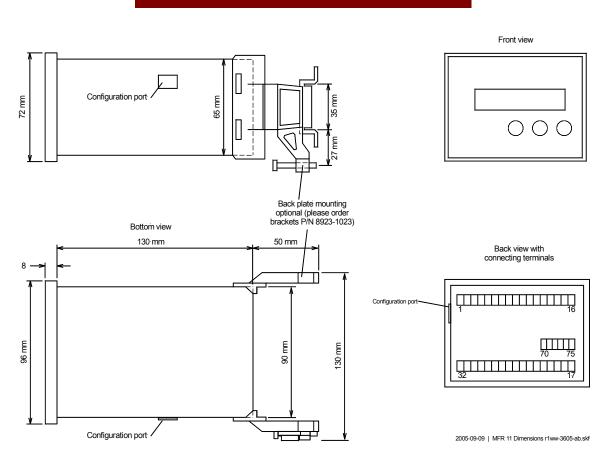


Figure 7-1: Dimensions

© Woodward Page 47/59

Appendix B. Technical Data

Nameplate -----S/N Serial number (numerical) 2 S/N Date of production (YYMM) 3 S/N Serial number (Barcode)) US LISTED Ind. Cont. Eq. 4 P/N Item number 5 **REV** Item revision number PART NO: REV: EASYGEN-1500 8440-1330 NEW EASYGEN-1500-558 6 Details Technical data 7 Type Description (long) 34,800: 1.27.6A DC Uses(IEC): 1290 AC ..: 12/24U DC fn:50/60HZ 8 Type Description (short) ont., re/opt : 250U AC 9 UL UL sign Measuring voltage ------ Measuring voltage Standard (V_{rated}) λ/Δ[1] 66/115 Vac [4] 230/400 Vac (Packages MP / G59) [7] 398/690 Vac Maximum value V_{ph-ph} max. (UL/cUL)......[1] max. 150 Vac [4] max. 300 Vac [7] max. 600 Vac Rated voltage V_{ph-ground}......[1] 150 Vac [4] 300 Vac [7] 400 Vac Rated surge voltage.....[1] 2.5 kV [4] 4.0 kV [7] 4.0 kV - Input resistance [1] $0.21 \text{ M}\Omega$ $[4] 0.7 M\Omega$ [7] 1.04 M Ω Ambient variables ------ Power supply Wide range power supply (Packages NU / G59N / SC+N)90 to 265 Vac/dc Storage-40 to 85 °C / -40 to 185 °F - Ambient temperature Operational-20 to 70 °C / -4 to 158 °F - Degree of pollution _______2 Discrete inputs----isolated - Input resistance approx. $68 \text{ k}\Omega$

Page 48/59 © Woodward

Relay outputs	potential free
- Contact material	AgCdO
- General purpose (GP) (V _{Cont, relay output})	
1 1 Cont, remy output	AC2.00 Aac@250 Vac
	DC2.00 Adc@24 Vdc
	0.36 Adc@125 Vdc
	0.18 Adc@250 Vdc
- Pilot duty (PD) (V _{Cont, relay output})	
1 1100 dates (1 2) (+ Cont, letay output)	AC
	DC1.00 Adc@24 Vdc
	0.22 Adc@125 Vdc
	0.10 Adc@250 Vdc
- Front cutout (W × H)	91 [+1.0] × 67 [+0.7] mm
- Wiring	Screw-type terminals 2.5 mm ²
recommended agateming torque	use 60/75 °C copper wire only
	use class 1 wire only or equivalent
- Weight	approx. 800 g
5	
	IP42 from front with correct mounting
Π	P54 from front with gasket (gasket: P/N 8923-1036)
	IP21 from back
	insulating surface
	tested according to applicable EN guidelines
	CE marking; UL listing for ordinary locations
	/cUL listed, Ordinary Locations, File No.: E231544
	o UL/cUL listing for Packages NU / G59N / SC+N)
- Marine-Approval	GL

© Woodward Page 49/59

Appendix C. Measured Quantities and Accuracy

Measuring value	Display/range	Accuracy	Note
Frequency			
f_{L1}, f_{L2}, f_{L3}	40.0 to .80.0 Hz	0.05 Hz	
Voltage			
$V_{L1}, V_{L2}, V_{L3}, V_{L12}, V_{L23}, V_{L31}$	0 to 520 V/0 to 65 kV	1 %	Accuracy depending on the configured transformer ratio

Reference conditions: The data apply to the following reference conditions:

- Input voltage = sinusoidal rated voltage
- Frequency = rated frequency $\pm 2 \%$
- Power supply = rated voltage $\pm 2 \%$
- Power factor $\cos \varphi = 1$
- Ambient temperature 23 °C \pm 2 K
- Warm-up period = 20 minutes.

Page 50/59 © Woodward

Appendix D. List of Parameters

Produc	et number P/N		Rev	V		
Versio	n MF	R 11				
Project	t					
Serial 1	number S/N		Date			
			Setting range	D. C. 144	G .	
Pkg.	Paramet	er	100/400/690 V	Default setting	Custome	er setting
D A CTA	C DATA					
DASI	Software version				T	
	SPRACHE/LANGUAGE		German/English	- English	□ G □ E	□G□E
	Enter code	number	0000 to 9999	English	попе	попе
	Password	Protection	ON/OFF	ON		
	Define level 1	code	0000 to 9999	0001		
	Define level 2	code	0000 to 9999	0001		
	Direct parametr.	code	YES/NO	NO NO		
MEAS	SUREMENT		I E3/NO	NO		
IVILIZA	VoltMeasuring		Phase to phase / Phase-neutral	Phase-neutral	□ pp □ pn	□ pp □ pn
	VoltMeasuring Volt.transformer	secondary	50 to 125/50 to 480 V	100/400 V	прр прп	прр прп
	Volt.transformer	primary	00.100 to 65.000 kV	00.400 kV		
SC SC+N	Volt.transformer	sec.(GN)	50 to 125/50 to 480 V	100/400 V		
	Volt.transformer	prim(GN)	00.100 to 65.000 kV	00.400 kV		
	Volt.transformer	sec.(MN)	50 to 125/50 to 480 V	100/400 V		
	Volt.transformer	prim(MN)	00.100 to 65.000 kV	00.400 kV		
	Rated voltage		5 to 125/10 to 480 V	100/400 V		
SC SC+N	Rated frequency		40.0 to 70.0 Hz	50.0 Hz		
CONT	TROL FUNCTIONS					
SC SC+N	Synchronizing	functions	ON/OFF	ON		
	Synchronization	df max	0.02 to 0.49 Hz	0.18 Hz		
	Synchronization	df min	0.00 to -0.49 Hz	-0.10 Hz		
	Synchronization	dV max	0.1 to 15.0 %	6.0 %		
	Synchronization	Max phase <	1 to 60°	2°		
	Synchronization	Time pulse	50 to 250 ms	200 ms		
SC	Circuit breaker	Pick-up t.	40 to 300 ms	80 ms		

© Woodward Page 51/59

Pkg.	Parameter		Setting range 100/400/690 V	Default setting	Custome	er setting			
PROT	PROTECTION								
	Volt. Monitoring		Phase-neutral / Phase to phase	Phase to phase	□ pn □ pp	□ pn □ pp			
	Overvoltage	Monitoring	ON/OFF	ON					
	Overvoltage 1	V(ph-ph)>	20 to 130 / 520 / 900 V	110/440/769 V					
		(Phase-N)>	10 to 75 / 300 V / 20 to 900 V	64/254/444 V					
	Overvoltage 1	Delay	0.02 to 99.98 s	0.10 s					
	Overvoltage 2	V(ph-ph)>	20 to 130 / 520 / 900 V	120/480/839 V					
		(Phase-N)>	10 to 75 / 300 V / 20 to 900 V	64/254/485 V					
	Overvoltage 2	Delay	0.02 to 99.98 s	0.04					
	Overvoltage	Hysteresis	0 to 99 V	1/4 V					
	Undervoltage	Monitoring	ON/OFF	ON					
	Undervoltage 1	V(ph-ph)<	20 to 130 / 520 / 900 V	90/360/629 V					
		(Phase-N)<	10 to 75 / 300 V / 20 to 900 V	51/207/363 V					
	Undervoltage 1	Delay	0.02 to 99.98 s	0.10 s					
	Undervoltage 2	V(ph-ph)<	20 to 130 / 520 / 900 V	80/320/559 V					
		(Phase-N)<	10 to 75 / 300 V / 20 to 900 V	46/184/323 V					
	Undervoltage 2	Delay	0.02 to 99.98 s	0.04 s					
	Undervoltage	Hysteresis	0 to 99 V	1/4/8 V					
SC SC+N	Zero-voltage	Monitoring	ON/OFF	ON					
	Zero-voltage		Busbar 1ph / Generator 3ph	Generator 3ph	□ B1 □ G3	□ B1 □ G3			
	Zero-voltage	V(ph-ph)<	3 to 180 V / 12 to 520 V	•					
		(Phase-N)<	2 to 87 V / 6 to 300 V						
	Zero-voltage	Delay	0.02 to 99.98 s	0.25 s					
	Zero-voltage	Hysteresis	0 to 99 V	1/4/8 V					
SC SC+N	Release delay	Zerovolt.	0.02 to 99.98 s	0.04 s					
	Asymmetry-	Monitoring	ON/OFF	ON					
	Asymmetry	Response v.	0 to 99 V	10/40/69 V					
	Asymmetry	Delay	0.02 to 99.98 s	2.00 s					
	Asymmetry	Hysteresis	0 to 99 V	1/4/6 V					
	Overfrequency-	Monitoring	ON/OFF	ON					
	Overfrequency 1	f>	40.00 to 80.00 Hz	50.2 Hz					
	Overfrequency 1	Delay	0,02 to 99.98 s	0.10 s					
	Overfrequency 2	f>	40.00 to 80.00 Hz	51.0 Hz					
	Overfrequency 2	Delay	0.02 to 99.98 s	0.04 s					
	Overfrequency	Hysteresis	0.01 to 9.99 Hz	0.05 Hz					
	Underfrequency-	Monitoring	ON/OFF	ON					
	Underfrequency 1	f<	40.00 to 80.00 Hz	49.8 Hz					
	Underfrequency 1	Delay	0.02 to 99.98 s	0.10 s					
	Underfrequency 2	f<	40.00 to 80.00 Hz	49.0 Hz					
	Underfrequency 2	Delay	0.02 to 99.98 s	0.04 s					
	Underfrequency	Hysteresis	0.02 to 99.98 s 0.01 to 9.99 Hz	0.04 s 0.05 Hz					
VDEW		,	0.01 to 7.77 112	0.03 112					
G59 G59N	Phase jump	monitoring	ON/OFF	ON					
	Phase jump monit.		one/three-phase / 3 phase only	3 phase only	□ 1/3 □ 3	□ 1/3 □ 3			
	Phase-jump value	(one phase)	3 to 90 °	30 °		_			
VDEW G59 G59N	Phase-jump value	(3-phase)	3 to 90 °	8°					
G59 G59N	df/dt-	Monitoring	ON/OFF	ON					
	df/dt	Response>	1.0 to 9.9 Hz/s	2.5 Hz/s					
G59 G59N	df/dt	Delay	0.1 to 9.9 s	0.1 s					

Page 52/59 © Woodward

Pkg.	Paramet	ter	Setting range 100/400/690 V	Default setting	Custome	er setting
RELA	Y CONFIGURATION	1				
	External	Clearing	ON/OFF	ON		
	Auto-clearing	Relays	ON/OFF	ON		
	Release delay	Overvoltage	0.02 to 99.98 s	0.10 s		
	Release delay	Undervoltage	0.02 to 99.98 s	0.10 s		
	Release delay	Asymmetry	0.02 to 99.98 s	0.10 s		
SC SC+N	Release delay	Zerovolt.	0.02 to 99.98 s	0.10 s		
	Release delay	Overfreq.	0.02 to 99.98 s	0.10 s		
	Release delay	Underfrq.	0.02 to 99.98 s	0.10 s		
VDEW G59 G59N	Release delay	Phase jmp	0.02 to 99.98 s	0.10 s		
G59 G59N	Release delay	df/dt	0.02 to 99.98 s	0.20 s		
	Auto-clearing	Display	ON/OFF	ON		
	Clearing display	after	1 to 99 s	1 s		
	Change relay-	allocation	YES/NO	YES	$\square Y \square N$	\square Y \square N
SC SC+N	Funct. relay 12	(R=release)	E/R	RE		
	Funct. relay 123	(R=release)	E/R	REE		
G59 G59N	Funct. relay 45	(R=release)	E/R	EE		
G59 G59N	Funct. relay 678	(R=release)	E/R	EEE		
SC SC+N	2. Synch.Check	relay 2	ON/OFF	OFF		
	Overvoltage 1	to relay	0 to 2/3/8	0002		
	Overvoltage 2	to relay	0 to 2/3/8	0002		
	Undervoltage 1	to relay	0 to 2/3/8	0002		
	Undervoltage 2	to relay	0 to 2/3/8	0002		
SC SC+N	Zero-voltage	to relay	0 to 2/3/8	0002		
	Asymmetry	to relay	0 to 2/3/8	0002		
	Overfrequency 1	to relay	0 to 2/3/8	0003		
	Overfrequency 2	to relay	0 to 2/3/8	0003		
	Underfrequency 1	to relay	0 to 2/3/8	0003		
MDEX	Underfrequency 2	to relay	0 to 2/3/8	0003		
VDEW G59 G59N	Phase jump	to relay	0 to 2/3/8	0003		
G59 G59N	df/dt	to relay	0 to 2/3/8	0003		
	Collect Response	to relay	0 to 2/3/8			

© Woodward Page 53/59

Appendix E. Service Options

Product Service Options

The following factory options are available for servicing Woodward equipment, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is purchased from Woodward or the service is performed. If you are experiencing problems with installation or unsatisfactory performance of an installed system, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact Woodward technical assistance (refer to "How to Contact Woodward" later in this chapter) and discuss your problem. In most cases, your problem can be resolved over the phone. If not, you can select which course of action you wish to pursue based on the available services listed in this section.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned to Woodward for repair, please contact Woodward in advance to obtain a Return Authorization Number. When shipping the unit(s), attach a tag with the following information:

- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part numbers (P/N) and serial number (S/N);
- description of the problem;
- instructions describing the desired repair.

CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules*.

Page 54/59 © Woodward

Packing a Control

Use the following materials when returning a complete control:

- protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls;
- a strong tape around the outside of the carton for increased strength.

Return Authorization Number RAN

When returning equipment to Woodward, please telephone and ask for the Customer Service Department in Stuttgart [+49 (711) 789 54-0]. They will help expedite the processing of your order through our distributors or local service facility. To expedite the repair process, contact Woodward in advance to obtain a Return Authorization Number, and arrange for issue of a purchase order for the unit(s) to be repaired. No work can be started until a purchase order is received.

NOTE

We highly recommend that you make arrangement in advance for return shipments. Contact a Woodward customer service representative at +49 (711) 789 54-0 for instructions and for a Return Authorization Number.

Replacement Parts

When ordering replacement parts for controls, include the following information:

- the part numbers P/N (XXXX-XXX) that is on the enclosure nameplate;
- the unit serial number S/N, which is also on the nameplate.

© Woodward Page 55/59

How to Contact Woodward

Please contact following address if you have questions or if you want to send a product for repair:

Woodward GmbH Handwerkstrasse 29 70565 Stuttgart - Germany

Phone: +49 (711) 789 54-0 (8.00 - 16.30 German time)

Fax: +49 (711) 789 54-100 e-mail: stgt-info@woodward.com

For assistance outside Germany, call one of the following international Woodward facilities to obtain the address and phone number of the facility nearest your location where you will be able to get information and service.

Facility	<u>Phone number</u>
USĀ	+1 (970) 482 5881
India	+91 (129) 409 7100
Brazil	+55 (19) 3708 4800
Japan	+81 (476) 93 4661
The Netherlands	+31 (23) 566 1111

You can also contact the Woodward Customer Service Department or consult our worldwide directory on Woodward's website (**www.woodward.com**) for the name of your nearest Woodward distributor or service facility. [For worldwide directory information, go to **www.woodward.com/ic/locations**.]

Page 56/59 © Woodward

Engineering Services

Woodward Industrial Controls Engineering Services offers the following after-sales support for Woodward products. For these services, you can contact us by telephone, by e-mail, or through the Woodward website.

- Technical support
- Product training
- Field service during commissioning

Technical Support is available through our many worldwide locations, through our authorized distributors, or through GE Global Controls Services, depending on the product. This service can assist you with technical questions or problem solving during normal business hours. Emergency assistance is also available during nonbusiness hours by phoning our toll-free number and stating the urgency of your problem. For technical engineering support, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference technical support.

Product Training is available on-site from several of our worldwide facilities, at your location, or from GE Global Controls Services, depending on the product. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability. For information concerning training, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference *customer training*.

Field Service engineering on-site support is available, depending on the product and location, from our facility in Colorado, or from one of many worldwide Woodward offices or authorized distributors. Field engineers are experienced on both Woodward products as well as on much of the non-Woodward equipment with which our products interface. For field service engineering assistance, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference *field service*.

© Woodward Page 57/59

Technical Assistance

If you need to telephone for technical assistance, you will need to provide the following information. Please write it down here before phoning:

Contact			
Your company			
Your name			
Phone number			
Fax number			
Control (see name plate) Unit no. and Revision:		REV: _	
Unit type	MFR 11		
Serial number	S/N		
Description of your prob	olem		
Please be sure you have a list of all p	parameters available.		

Page 58/59 © Woodward

We appreciate your comments about the content of our publications.

Please send comments to: stgt-documentation@woodward.com

Please include the manual number from the front cover of this publication.

Woodward GmbH

Handwerkstrasse 29 - 70565 Stuttgart - Germany Phone +49 (711) 789 54-0 • Fax +49 (711) 789 54-100 stgt-info@woodward.com

Homepage

http://www.woodward.com/power

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address/phone/fax/e-mail information for all locations is available on our website (www.woodward.com).

2007/7/Stuttgart